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group of these proteins is the lytic enzymes which is
The endochitinase from barley is the archetypal en- composed primarily of b, 1-3 glucanases and chitinases.

zyme for a large class of plant-derived antifungal chi- In their role as defense proteins, these enzymes limit
tinases. The X-ray structure was solved previously in fungal growth by hydrolyzing (1–3) b glucan and chi-
our laboratory and a mechanism of action proposed tin, a b, 1-4-linked polymer of N-acetylglucosamine
based on structural considerations. In this manuscript (GlcNAc)3, the major structural polysaccharides of fun-
we report the use of a defined soluble substrate, 4- gal cell walls. The actions of these two enzymes as
methylumbelliferylb-N,N*,N9-triacetylchitotrioside, to antifungal agents either alone (1–4) or acting synergis-
characterize kinetic parameters of the enzyme. The pH tically (5) has been well documented. Four classes of
profile shows that activity is controlled by a base with plant chitinases have been proposed based on amino
a pKa of 3.9 (Glu 89) and an acid with a pKa of 6.9 (Glu acid sequence (6, 7). Classes I, II, and IV have homolo-
67). The Km using the synthetic substrate is 33 mM, and gous catalytic domains, but classes I and IV also pos-
the kcat is 0.33 min01, while the Km for (GlcNAc)4 is 3 sess a N-terminal cysteine-rich domain homologous to
mM and kcat is 35 min01. Binding constants were mea- wheat germ agglutinin. Class III chitinases show littlesured for b-linked oligomers of N-acetylglucosamine.

sequence similarity to the enzymes in classes I, II, orThe monomer does not bind and dissociation constants
IV and are more prevalent in fungi and bacteria thanfor the dimer, trimer, and tetramer are 43, 19, and 6
in higher plants. They also seem to posses reduced anti-mM, respectively. Analysis of kinetic and dissociation
fungal activity compared to the class II enzymes, pre-constants proves the mechanism of barley chitinase is
sumably because they possess a different substrateconsistent with a Bi–Bi kinetic model for hydrolysis,
specificity (1).with (GlcNAc)4 and water as substrates and (GlcNAc)2

Barley endochitinase, a class II chitinase, is a 26-kDaas products. Substrate cleavage patterns show that
monomeric enzyme. It has moderate to high sequence(GlcNAc)6 is cleaved in half to (GlcNAc)3 as well as into
identity with other class II plant chitinases from to-(GlcNAc)4 and (GlcNAc)2 with almost equal efficiency.
bacco, potato, arabidopsis, and rice (8). The X-ray struc-NMR analysis of cleavage products confirms that the
ture of barley chitinase has been solved (9) and refinedenzyme proceeds with anomeric inversion of products.
to 1.8 Å resolution (8). The structure shows a globularq 1997 Academic Press

Key Words: glycohydrolase; enzyme mechanism; chi- protein with high a-helical content and an elongated
tin binding. cleft running the length of the protein, presumably for

substrate binding and catalysis. Hypothetical sub-
strate binding models with the structure suggest that
there are at least six sugar-binding sites labeled A

Plants produce a variety of pathogenesis-related pro- through F from the nonreducing end (8). Residues Glu
teins3 in response to stress or infection. The largest 67 and Glu 89 are thought to be involved in hydrolytic

catalysis, cleaving the substrate between sites D and
1 This work was supported by grants GM 30048 and GM35989 E (10). The putative mechanism involves protonation

from the National Institutes of Health and by grants from the Foun- of the glycosidic bond at the C4 oxygen of the leaving
dation for Research and the Welch Foundation. E sugar, by Glu 67. At the same time, Glu 89 may act2 To whom correspondence should be addressed. E-mail: jrobertus as a base to activate a water molecule which attacks@mail.utexas.edu.

the C1 position of the D sugar on the a side. This mech-3 Abbreviations used: GlcNAc, N-acetylglucosamine; (GlcNAc)3

UMB, 4-methylumbelliferyl b-N,N*,N9-triacetylchitotrioside. anism, suggesting that the barley chitinase mechanism
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336 HOLLIS ET AL.

reading the absorption of a 1:5 dilution at 450 nm. A standard curveproceeds with inversion of product, is proven chemi-
using GlcNAc was constructed as above, and shown to be linear overcally in this paper.
the range of product measured, allowing the conversion of absorptionIt has also been shown that barley chitinase is the units to nmoles reducing ends produced per hour.

archetypal enzyme of a superfamily of glycohydrolases Initial rate velocities were fit to the hyperbolic rate equation using
the program SigmaPlot (Jandel Scientific) to determine Km and Vmaxwhich include the plant chitinases, bacterial chitosa-
values. These were also computed from double reciprocal and Eadie–nases, and lysozymes from hen, goose, and T4 phage
Hofstee plots; all calculations produced similar values for each sub-(11). Despite exhibiting no significant amino acid se-
strate.quence similarities, these proteins were shown to be Binding constants for GlcNAc, (GlcNAc)2, (GlcNAc)3, (GlcNAc)4,

structurally related, containing an ancient core domain and (GlcNAc)3UMB (Sigma), the only defined substrates which are
which binds substrates. Although bacterial and eucary- commercially available, were determined by measuring the change

in intrinsic chitinase (1 mM protein) fluorescence while titrating withotic glycohydrolases have differing N- and C-terminal
ligand at pH 7. Measurements were made by exciting at 290 nm anddomains, the common core unifies classes 19, 22, 23,
measuring fluorescence emission at 340 nm for (GlcNAc)n and 29024, and 46 in the sequence-based classification scheme and 325 nm for (GlcNAc)3UMB. As a control, ligands were also ti-

proposed by Henrissat (12). trated into free tryptophan (6 mM), which showed no change in fluo-
Although the plant chitinases have been analyzed rescence. The final titration of ligand did not exceed 5% of the start-

ing volume. Complete titration and fluorescent measurements forqualitatively regarding their antifungal activity, very
each oligosaccharide were done within a 5-min time span to makelittle is known about their enzyme kinetics. Partly this
hydrolysis of sugars a negligible factor. The results were plotted asis due to the fact that chitin is an insoluble polymer [1-(fluorescence with ligand (F1)/no ligand (F0))] vs ligand concentra-

and therefore an inappropriate substrate for initial tion.
rate kinetics. Koga et al. (13) analyzed the hydrolysis pH-dependent kinetic studies were done in 0.1 M citrate, acetate,

phosphate, and Tris buffers. Reactions were run at each pH for 1, 2,of b-linked oligo (GlcNAc) substrates for the chitinase
and 3 h. Data were fit to a line using Sigma plot; slopes were normal-from yam, a homologue of the barley enzyme. They
ized against the largest value and plotted against pH.showed, for example, that (GlcNAc)6 was primarily Anomer analysis of the product was carried out through NMR.

cleaved into (GlcNAc)4 and (GlcNAc)2, that (GlcNAc)4 The substrate oligosaccharide, (GlcNAc)6, was lyophilized three
was cleaved in half, and that (GlcNAc)2 could not be times from D2O and then dissolved in 0.6 ml of 50 mM sodium acetate-

d3 buffer, pH 4.3. The purified chitinase solution was concentratedhydrolyzed. The Km for (GlcNAc)6 was roughly 10 mM,
and dialyzed against the sodium acetate-d3 buffer using a Centriconand the turnover number, kcat , was Ç25 min01. In this
concentrator (Amicon Co.), and 10 ml of the solution was mixed withpaper we report the kinetic and binding parameters for the substrate solution in an NMR tube. The resultant concentrations

barley endochitinase, the only member of this family of enzyme and substrate were 2.6 and 3.1 mM, respectively. The
for which an X-ray structure exists. In addition to NMR tube was immediately set into an NMR probe equipped with

a Jeol EX-270 spectrometer, and the enzymatic reaction was con-(GlcNAc)4, a soluble artificial substrate is used to ob-
ducted in the NMR probe maintained at 257C. After an appropriateserve initial rates, and binding constants for small
reaction time, accumulation of the 1H NMR spectrum was startedoligomers of natural substrates are observed by fluo-
and required 3 min. From the time-dependent profile of the spectra,

rescence. the anomeric form of products was determined. As a control, the
same reaction was carried out with penta-N-acetylchitopentaitol, a
substrate which chitinase is not able to hydrolyze. The spectrum of

MATERIALS AND METHODS the reaction mixture did not change with time.
For a time course of the enzymatic reaction, the substrate oligosac-Chitinase was purified from barley by the methods of Leah et al.

charide was dissolved in 50 mM acetate buffer, pH 5.0, and several(4). The kinetic assays were performed using both 4-methylumbellif-
microliters of the chitinase solution dialyzed against the same buffereryl b-N,N*,N9-triacetylchitotrioside ((GlcNAc)3UMB) and (GlcNAc)4
was added to 0.5 ml of the substrate solution. The reaction mixture(Sigma). (GlcNAc)3UMB was dissolved in 0.1 M sodium phosphate
was incubated at 407C for an appropriate period. A portion of thebuffer, pH 6.0. Then, 95 ml of substrate solutions, ranging in concen-
reaction mixture was withdrawn and mixed with the same volumetration from 0 to 0.25 mM, were mixed with 5 ml of enzyme (0.27 mg/
of 0.5 M sodium hydroxide in order to terminate the enzymatic reac-ml) and incubated at 307C. for 1.5, 2.5, and 3.5 h. The reactions were
tion, and the resultant solution applied to a gel-filtration column ofstopped by adding 2.9 ml of 0.5 M glycine, pH 10.5. Release of free
TSK-GEL G2000PW (7.5 1 600 mm, Tosoh). The elution was con-methylumbelliferone was measured by fluorescence spectrophotome-
ducted with distilled water at a flow rate of 0.3 ml/min, and thetry, using an SLM 8000 fluorescence spectrophotometer, exciting at
substrate and the products were monitored by absorption at 220 nm.360 nm, and measuring emission at 450 nm. A standard curve of
From the peak area obtained by the HPLC, oligosaccharide concen-free methylumbelliferone was constructed and shown to be linear
trations at each reaction time were calculated using the standardover the range of product measured; this allowed the conversion of
curve obtained with the authentic saccharide solution.fluorescence counts to nmoles of methylumbelliferone released per

Determination of products from (GlcNAc)3UMB digestion was car-hour.
ried out using capillary electrophoresis. Fifty microliters of reactionFor the kinetics using (GlcNAc)4 a modified reducing sugar assay
mixtures containing 1.5 mM substrate and 0 or 5 mg of enzyme waswas used (14). Reactions (300 ml) containing substrate ranging from
incubated at 307C for 24 h. The reaction products were then sepa-0 to 0.25 mM in 0.1 M sodium phosphate buffer, pH 6.0, and 5.2 mg
rated on a Beckman P/ACE 5000 capillary electrophoresis instru-chitinase were incubated for 2 h at 307C. Reactions were stopped by
ment using 200 mM borate buffer with 2-s injection times and run-adding 700 ml of water and 1 ml of solution A (0.35 M sodium carbon-
ning at 7.0 V. The capillary was a 50-cm (to point of detection) non-ate, 0.2 M glycine, and 3.0 mM copper sulfate) and solution B (0.12%
coated standard silica capillary. Elution times were measured byneocuproine) to each. The reactions were then heated to 957C for

exactly 9.0 min. Formation of reducing sugars was measured by monitoring absorption at 200 and 280 nm.
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337KINETIC ANALYSIS OF BARLEY CHITINASE

FIG. 1. The pH profile of chitinase. (A) Enzyme activity was observed under conditions of substrate saturation for the pHs indicated.
Activity is expressed as a fraction of the maximum values. (B) Log of activity vs pH. Inflection points give pKas of 3.9 and 6.8, which are
presumably for Glu 89 and Glu 67, respectively.

RESULTS Figure 3 shows the results of equilibrium binding
assays with varying lengths of substrate polymer, fromChitinase activity against (GlcNAc)3UMB was mea-
GlcNAc to (GlcNAc)4. (GlcNAc)4 proved to have the low-sured as a function of pH (Fig. 1A). There is no measur-
est Kd , followed by (GlcNAc)3 and (GlcNAc)2, respec-able activity below pH 3.2, at which point there is a
tively. GlcNAc alone, which is not shown in the figure,dramatic increase in activity as the pH rises to 4. The
had no measurable affinity up to 500 mM. The Kd valuesenzyme remains remains fully active until pH 7, fol-
for (GlcNAc)4, (GlcNAc)3, and (GlcNAc)2 are 6 { 1, 19lowed by a precipitous drop in activity above pH 8.
{ 2.5, and 43 { 3 mM, respectively. The artificial sub-Figure 1B shows a plot of the log of activity vs pH. The
strate (GlcNAc)3UMB had a Kd of 90 { 7 mM.ascending limb has a slope of 1 with a pKa Ç3.9; the

The time-dependent profile of the 1H NMR spectrumdescending limb has a slope of 1 and pKa Ç6.8.
of the chitinase reaction mixture is shown in Fig. 4A.The results of the kinetic analysis of barley chitinase,
According to the assignments reported thus far (15),using (GlcNAc)3UMB substrate concentrations from 1
the signals at 5.14 ppm (H1a) and 4.64 ppm (H1b) aremM to 250 mM, are represented in Fig. 2A. The hyper-
derived from the anomeric proton of a reducing endbolic plot of the data shows that the enzyme has a Km
GlcNAc residue in a-form and in b-form, respectively.of 33 mM, a Vmax of 12 nmol/min/mg enzyme, and a kcat
The signals at 4.5–4.6 ppm (H1) are from the anomericof 0.36 min01. From this, the catalytic efficiency, kcat/
protons of the other GlcNAc residues. With progress ofKm, is calculated to be 1.7 1 102 M01 s01. Figure 2B
the reaction time, the peak area of the signals of H1shows the results of the kinetic assay using (GlcNAc)4.
decreased, and those of H1a and H1b increased. H1aWith this substrate, the enzyme has a Km of 3 mM, a
increased rapidly in the early stages of the reaction,Vmax of 1.2 mmol/min/mg enzyme, a kcat of 35 min01, and

a kcat/Km of 1.9 1 105 M01 s01. while the increment of H1b was quite gradual. The

FIG. 2. Initial rate activity of barley chitinase. A direct plot of velocity data as a function of substrate concentrations shows hyperbolic
kinetics. (A) Vmax Å 12 nmol/min/mg enzyme and Km Å 33 mM for (GlcNAc)3UMB hydrolysis. (B) Vmax Å 1.2 mmol/min/mg and Km Å 3 mM

for (GlcNAc)4.
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FIG. 3. Chitinase binding of oligomers. F1/F0 Å fluorescence of chitinase with ligand/no ligand. (A) Triangles, (GlcNAc)4 (Kd Å 6 mM);
squares, (GlcNAc)3 (Kd Å 19 mM); circles, (GlcNAc)2 (Kd Å 43 mM). (B) (GlcNAc)3UMB (Kd Å 90 mM).

time courses of relative peak areas of individual signals enzyme. In the productive mode, the (GlcNAc)3 moiety
are also shown in Fig. 4B. From these figures, it was of the substrate binds in sites B–D and 4-methylum-
found that the chitinase produces only the a-form, belliferyl interacts at site E, although in a different
which is then transformed to the b-form by mutarota- way from a natural substrate GlcNAc group.
tion. Chitinase from Hordeum vulgare L. seeds is there- As mentioned earlier, we have also proposed that
fore an inverting enzyme. barley chitinase is the archetype of a superfamily of

To obtain information on subsite structure and char- glycohydrolases. The structural similarity among them
acteristics of the enzymatic reaction, it is essential to is likely to give rise to funcitonal similarities as well.
analyze experimental time courses of oligosaccharide Anomeric forms of the products from Streptomyces sp.
degradation and product formation. As shown in Fig. N174 chitosanase and phage T4 lysozyme have been
5A, (GlcNAc)6 was hydrolyzed to (GlcNAc)3/ (GlcNAc)3 reported to be the a-form (16, 17), and the product from
and (GlcNAc)2 / (GlcNAc)4; the efficiencies of the two goose egg white lysozyme was also the a-form (Kuroki
cleavages were almost identical. Equal amounts of et al., personal communication). All of these are in-
(GlcNAc)3 and (GlcNAc)2 were produced from verting enzymes, and the barley chitinase investigated
(GlcNAc)5, and only (GlcNAc)2 was detectable from in this study was expected to be an inverting one. The
(GlcNAc)4 (Figs. 5B and 5C). Figure 6 shows the results anomeric form of the products from chitinase was the
of (GlcNAc)3UMB hydrolysis with barley chitinase. As a-form, and the result was consistent with anticipation
expected from the hydrolysis of natural substrate, the from the structural study.
major product is cleavage into (GlcNAc)2 and (GlcNAc) The results of the pH analysis of chitinase also lend
umbelliferone. Fluorescence arises only from free um- support to the hypothesis about the chitinase mecha-
belliferone, so it is clear that some of the substrate nism. Figure 1b shows enzyme activity requires the
is hydrolyzed between (GlcNAc)3 and the umbelliferyl unprotonated form of a group with a pKa Ç3.9. This is
group. We have not been able to quantitate the exact probably Glu 89 acting as a base. Catalysis is indepen-
amount of this cleavage relative to the major products, dent of pH until values of about 6.5. Activity is then
but it is clear that over 90% of the (GlcNAc)3UMB lost as an acid is deprotonated. This is presumably Glu
cleavage does not produce fluorescent umbelliferone. 67, manifesting a pKa of Ç6.8. Although this is high

for a carboxylic acid, it is similar to the value observed
DISCUSSION for the homologous Glu residues of lysozyme. For exam-

ple the pKa for Glu 35 of hen egg white lysozyme isWe have proposed a mechanism of action for chi-
6.7 (18). It may be that binding a substrate polymertinase, based largely on the X-ray structure and model-
dehydrates the active site and dramatically raises theing of substrate binding (8, 11). Some elements of this
pKa of this group, which is otherwise exposed to solvent.hypothesis, appropriate to the fluorescent substrate

The poly(GlcNAc) dissociation constants we mea-used in this study, are shown in Fig. 7. The cleavage
site lies between sugar binding sites D and E on the sured show the intuitively expected results. A decrease

FIG. 4. (A) 1H NMR spectrum of chitinase hydrolysis of (GlcNAc)6. Signals at 5.14 and 4.64 ppm are from the anomeric proton of the
reducing end of GlcNAc in the a-form and the b-form, respectively. (B) Time course of relative peak areas of individual signals from A.
H1a increased rapidly through the early part of the experiment, while H1b remained relatively constant.
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chitinase cleaves purified (GlcNAc)6 into several pat-
terns. The main one is cleavage into trimers,
(GlcNAc)3, although cleavage into tetramers and di-
mers is also common. Recalling that the cleavage point
is defined to be between sites D and E, the cleavage
patterns suggest that substrate binding across the cat-
alytic site may be more nearly symmetrical than for
hen lysozyme. That is, the strength of binding at sites E
and F may be relatively greater than that for lysozyme,
although it is likely that sugar binding to site D is still
not favorable. Short oligomers, dimers and trimers, do
not accumulate enough interactions on either side of
the D site to bind well. That is, the enthalpic contribu-
tions made by hydrogen bonding and Van der Waals
interactions over a short span do not compensate for
the entropic costs of freezing the saccharide onto the
enzyme surface. A polysaccharide can accumulate
enough favorable interactions to assure binding by

FIG. 5. Time course of (GlcNAc) oligosaccharide degradation cata-
lyzed by chitinase. (Top) (GlcNAc)6 hydrolysis produced (GlcNAc)3

as well as (GlcNAc)4 and (GlcNAc)2. (Center) (GlcNAc)5 hydrolysis
produced (GlcNAc)3 and (GlcNAc)2. (Bottom) (GlcNAc)4 hydrolysis
produced only (GlcNAc)2.

in Kd , or an increase in Ka , is seen with increasing
length of (GlcNAc) polymer. As indicated in Fig. 7, spe-
cific contacts for the hydrolyzable substrate are made
with the enzyme at sites B–D. These are modeled on
the crystallographically observed binding of substrates
to lysozymes (11). No crystallographic observations
have been made for substrates binding at sites E, F, or
higher in lysozyme, suggesting that binding at those
aglycone sites is relatively weak. Measurements have
been made for the free energy of binding substrates to
hen egg white lysozyme (19). These suggest the strong-
est interactions are made at site C, followed by B at
about half the strength, and then A, E, and F at about
one-quarter strength. It was observed that interactions
at D were unfavorable, consistent with the widely held
idea that the substrate at D is distorted into a half-
chair configuration to mimic the transition state of the
hydrolytic reaction (20), although this interpretation
has been questioned based on quantum mechanical and

FIG. 6. Capillary electrophoresis separation of (GlcNAc)3UMB hy-other energy calculations (21).
drolysis by chitinase. (A) (GlcNAc)3UMB after 0 h. (B) (GlcNAc)3UMBThe poly(GlcNAc) cleavage by barley chitinase pres- after 15 h. (C) (GlcNAc)2 (27.5 min retention time) and (GlcNAc)3 (29

ents a picture which is complementary to, but different min retention time). (D) 4-Methylumbelliferone (18.5 min retention
time).from, that of lysozyme. We have shown that barley
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tinase against poly(GlcNAc) substrates (13). The cata-
lytic rate, on the other hand, is 0.3/min, perhaps 50 to
100 times slower than that for the yam enzyme acting
on poly(GlcNAc) or for lysozyme acting against natural
substrates (22). This can be accounted for by the fact
that we are measuring possibly only 1% of the actual
hydrolysis taking place. It is the convenience of this
substrate, however, that makes it a useful tool for fu-
ture analysis of wild-type and mutant chitinases.

An interesting observation is that with (GlcNAc)4,
as well as with (GlcNAc)3UMB, Km is about 1

2 to 1
3 Kd

for the ligand. For a simple Michaelis–Menton kinetic
model, Kd must always be smaller than Km, indicating
this is an inappropriate model for chitinase.

If the reaction is treated as ordered Bi–Bi, with
(GlcNAc)4 and H2O as the substrates and (GlcNAc)2

FIG. 7. Schematic binding of the 4-methylumbelliferyl b-N,N*,N9- and (GlcNAc)2 as the products, experimental parame-
triacetylchitotrioside substrate to the active site of barley chitinase. ters can be redefined. Using Cleland nomenclature (23)The binding of polysaccharides to the enzyme is based on the model

and the King–Altman method for analyzing steady-of Hart et al. (1995). Glu 67 is the acid which protonates the leaving
group, 4-methyl umbelliferone in this case. Glu 89 acts as a base to state models (24), an equation for initial velocity can
activate a water molecule attacking the a-side of sugar D in the be constructed in which
inverting mechanism.

Km Å k2k3k4/k1k2(k3 / k4)

andspanning the catalytic site, binding at A–F. Once hy-
drolysis has occurred, the two separate oligosaccha- Kd Å K01/k1 ,
rides lack the interaction strength to remain firmly
bound, and they diffuse away; the aglycone product in where the rate constants are those indicated in Fig. 8.
sites E and F probably leaves first, while the saccharide Taking the ratio of these yields
binding at stronger sites (C and B) is probably retained
longer. The requirement to bind lengthy substrates is Km/Kd Å k3k4/k01(k3 / k4),
consistent with the biological function of the enzyme,
which is to hydrolyze a solid chitin matrix on fungal where k01 is the first-order dissociation rate of
invaders, thereby weakening their walls. There is no (GlcNAc)4 and k3 and k4 are the dissociation rates of
selective advantage in binding short oligosaccharides the two (GlcNAc)2. Without being specific about the
since they do not benefit the host and such binding numerical values of each constant, it is clear that in
would only serve to inhibit the defensive enzyme. the limit they all become equal, the ratio becomes 1

2,
The fluorescent model substrate used in our kinetic which is very close to the ratio we observe. That is,

studies is a (GlcNAc)3 saccharide with a 4-methylum-
belliferone group as the aglycone. The substrate binds
productively as shown in Fig. 7, with GlcNAc groups
in sites B–D, and the methylumbelliferone group at
site E. Hydrolysis releases the methylumbelliferone
group, which is measured by its fluorescence. The main
product from hydrolysis of (GlcNAc)3UMB, however, is
the result of binding in another conformation, over sites
C–F. Consistent with our cleavage patterns, and those
of yam chitinase (13), (GlcNAc)2 and (GlcNAc) umbellif-
erone are the major hydrolysis products (Fig. 6), which
is unproductive for this assay. The productive hydroly-
sis, however, does show a linear response with time,
and its convenience makes it useful for future work
characterizing wild-type and mutant enzymes of this
class. FIG. 8. Kinetic model of chitinase hydrolysis. The reaction is

The Km for the (GlcNAc)3UMB substrate is 33 mM, treated as Bi–Bi, with (GlcNAc)4 and H2O as the substrates and
(GlcNAc)2 and (GlcNAc)2 as the products.nearly identical to the values reported for yam chi-
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