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Abstract
The amount of data produced by molecular biologists is growing at an exponential rate. Some

of the fastest growing sets of data are measurements of gene expression, comparable in

quantity only to gene sequences and the vast biological literature. Both gene expression data

and sequence data offer hints as to the functions of thousands of newly discovered genes, but

neither give complete answers. Therefore, much effort is being focused on integrating these

large data sets and combining them with all available functional data to draw inferences about

the functions of uncharacterised genes. This review discusses the most pertinent functional

data for genome-wide functional inference and describes several methods by which these

disparate data types are being integrated.

INTRODUCTION
The many ongoing genome sequencing

projects have led to an explosion of

sequence data, leading to the discovery of

thousands of genes of as yet unknown

function. In an effort to assign function to

these uncharacterised genes, biologists are

developing a number of methods to

collect functional data on a genome-wide

scale. While these new technologies offer

tantalising suggestions of gene function, it

is becoming evident that, instead of

relying on the results of any one method,

large-scale functional inference would

bene®t immensely if the variety of data

being generated were to be uni®ed in

some manner. Here we discuss some of

the large data sets available to biologists,

and some of the ways in which these data

are being integrated.

A BRIEF SURVEY OF THE
LARGEST BIOLOGICAL
DATA SETS
To introduce efforts at integrating data for

inferring gene function, let us ®rst

examine the available sources of genome-

wide data. The biological literature itself

represents one of the largest sets of

biological data, with about 12 million

catalogued research papers and abstracts

available through Medline. Representing

the current state of biological knowledge,

these abstracts and a smaller number of

complete research papers available on-

line, growing through the efforts of

PubMed Central and the Public Library

of Science, are proving to be useful for

functional inference and automated

interpretation of other data.

In spite of the extraordinary amount of

literature data, the number of known

nucleotide and amino acid sequences may

even exceed the literature in quantity.

With more than 60 fully sequenced

genomes in the public domain, and many

more in the pipeline, the amount of

sequence data contained in databases such

as Genbank (see Table 1) has been

growing exponentially. As of April 2001,

Genbank contained more than 16 billion

base pairs of DNA sequence, which

includes expressed sequence tags (ESTs),

sequence tagged sites (STS), genome

survey sequences (GSS) and complete

genome sequence data.
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Publicly available gene expression data,

such as EST libraries, Serial Analysis of

Gene Expression (SAGE) libraries and

DNA microarray data, are also growing in

quantity extremely rapidly. Currently,

more than 8 million EST measurements

and 2 million SAGE measurements are

available from the dbEST and SAGEmap

databases respectively, as well as hundreds

of publicly available DNA microarray data

sets for several different organisms,

including yeast and human, from the

Stanford Microarray Database.

Other growing sources of genome-

wide data are protein-interaction

measurements, phenotypic data and

protein expression measurements.

Though these data sets are not available in

the same large volumes as literature,

sequence and gene-expression data, they

are proving to be extremely useful for

construction of large-scale interaction

networks, ultimately leading to more

accurate functional annotation. Protein

interaction data are largely derived from

high-throughput yeast two-hybrid

experiments in which interactions are

measured between all gene pairs in a

genome. Over 4,000 unique protein

interactions were observed between yeast

proteins in three large-scale

experiments.1±3 Using a similar strategy,

over 1,200 interactions have been

identi®ed between proteins of the human

gastric pathogen Helicobactor pylori,

connecting by interactions about 47 per

cent of the proteins encoded in the H.

pylori genome.4 Similar interaction

screens are being performed for proteins

of Caenorhabditis elegans.5

Databases combining such large-scale

interaction data with the hundreds of

individual interactions reported in the

literature are also available. The Database

of Interacting Proteins (DIP) currently

contains over 9,500 interactions between

approximately 5,700 proteins, a majority

of which are from yeast and human.6

Beyond cataloguing protein interactions,

several groups have attempted to gather

together all known pathways into

databases, such as the metabolic pathway

databases KEGG,7 EcoCyc/MetaCyc8

and the regulatory database

TRANSFAC.9 Like interaction data,

phenotypic data are accumulating for

mutants of thousands of genes in a few

model organisms. Recent data of this sort

include the measurement of disruption

phenotypes of approx. half of the genes of

Table 1: Online sources of large-scale biological data discussed

Database Records Address

dbEST 8,281,203 public entries http://www.ncbi.nlm.nih.gov/dbEST/
DIP 9,746 Interactions http://dip.doe-mbi.ucla.edu/
EcoCyc/MetaCyc 164 pathways http://ecocyc.pangeasystems.com/ecocyc/
Genbank 11,546,000 sequence records http://www.ncbi.nlm.nih.gov/Genbank/

index.html
KEGG Most known pathways, in 100 graphical

diagrams and 60 orthologue group tables
http://www.genome.ad.jp/kegg/

Medline .11 million references http://www4.ncbi.nlm.nih.gov/PubMed/
SAGEmap 189,004 sage sequences; 375,011 unique tags http://www.ncbi.nlm.nih.gov/SAGE/
SGD 6,000 yeast genes http://genome-www.stanford.edu/

Saccharomyces/
Stanford Microarray

Database
313 public array experiments http://www.dnachip.org/

SWISS-PROT
(release 38.0)

�80,000 curated sequence entries from
7,478 organisms

http://www.expasy.ch/

SWISS-2D PAGE 31 2D-PAGE gels;
.700 indexed proteins

http://ca.expasy.org/ch2d

TRANSFAC (release 5.0) 9,009 sites; 3,504 factors http://www.gene-regulation.de/
YPD 6,281 proteins; 20,285 refs http://www.proteome.com/databases/

index.html
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yeast10,11 the transposon mutagenesis of

most of the genes of Mycoplasma

genitalium,12 and the RNAi silencing of

many of the C. elegans genes.13±15

Protein expression data are

accumulating much more slowly than the

interaction and phenotype data.

Currently, few sets of protein expression

data are publicly available, although more

than 30 two-dimensional polyacrylamide

gel electrophoresis (2D PAGE) analyses,

each an observation of the expression

level of thousands of proteins, are publicly

available from the Swiss 2D-PAGE web

server. However, a great deal of effort is

being focused in this direction, and it is

likely that these data will rapidly become

available. Recent developments in mass-

spectrometric techniques have allowed

the ®rst large-scale quantitative

measurements of protein expression

patterns, using two main approaches. In

the ®rst approach, tandem mass

spectrometry of cysteine-containing

peptides puri®ed with sulphydryl-speci®c

af®nity reagents has yielded expression

measurements of hundreds of

proteins.16,17 In a second approach,

peptides generated from cell extracts were

identi®ed based upon capillary

electrophoresis elution times and high-

resolution mass measurements from

Fourier transform ion cyclotron resonance

mass spectroscopy.18,19 As with the ®rst

technique, expression levels were

measured for thousands of peptides; each

peptide was then mapped to its parent

protein by database matching. Curiously

enough, measured protein expression

levels correlate poorly with mRNA

expression levels in the two experiments

in which this has been tested on a large

scale, suggesting that this information will

be a valuable complement to mRNA

expression measurements20,21 (Figure 1).

Measurements of metabolite

concentrations de®ned as a function of

cell condition, and spatial expression

patterns of genes (the measurement of the

locations in a cell or tissue where a

particular gene is expressed) provide two

additional types of data useful for

functional annotation. Such data are

currently either only sporadically available

or have not been suf®ciently developed to

demonstrate their full potential.

Spatial expression patterns of either

Figure 1: Protein and mRNA expression
levels of several hundred genes have been
only poorly correlated in two large-scale
experiments.

20,21
This raises the question of

whether it would be better to infer
functional relationships between genes from
correlations in their protein or correlations
in their mRNA levels. However, this poor
correlation distracts from the fact that both
mRNA and protein expression patterns,
while being largely uncorrelated with each
other, are likely to both provide similar
functional linkages between genes. In this
illustration, two genes with related function
have closely related mRNA expression
patterns as well as closely related protein
expression patterns. However, the mRNA
patterns little resemble the protein
expression patterns. In spite of this
disagreement, a functional relationship can
be inferred between genes 1 and 2 by
analysis of either protein or mRNA co-
expression; the functional link inferred
between genes 1 and 2 is even stronger
when both methods are used. The
corresponding expression vectors are shown
at the bottom of the ®gure, with grey-scale
colouring indicating the level of expression at
successive time points. Typically, a measure
of the correlation between such expression
vectors is calculated. Genes with correlated
expression vectors can be assumed to
function together provided the vectors are
suf®ciently complex
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mRNA or proteins are technically

dif®cult to collect and to compare

quantitatively. However, one such project

has been quite successful in collecting

measurements of the cellular distribution

of gene expression in Xenopus embryos.22

Screening with randomly chosen cDNAs,

the expression patterns of nearly 300

unique mRNAs have been detected by

whole mount in situ hybridisation. The

patterns were documented and collected

in a database23 (AxelDB). Early analysis of

these data con®rms that genes with

common spatial expression patterns often

have related functional roles.

Metabolite expression patterns,

collected in a process termed metabolic

pro®ling, hold a great deal of promise for

functional dissection of metabolic

pathways. More generally, metabolic

pro®ling appears to be a relatively

straightforward method by which to build

a quantitative description of the state of a

cell. Metabolic pro®ling carries no spatial

information, instead measuring the

concentration of metabolites under a

given set of cellular conditions. Two

approaches seem most promising for

measuring cellular metabolite

concentrations: gas chromatography/mass

spectrometry (GC/MS; eg see Fiehn et

al.24) and nuclear magnetic resonance

spectroscopy (NMR; eg see Raamsdonk

et al.25). In both methods, cells are lysed

and the ®ltered crude cell extract is

analysed directly with minimal separation.

In NMR, a proton spectrum of the crude

extract is used as a data vector describing

the state of the cells. Here, the NMR

spectrum, corresponding to the composite

spectrum of all metabolites in the cell,

provides a quantitative measurement of

the phenotype of the cell. This approach

abrogates the need to identify individual

metabolites. In GC/MS, the crude extract

is ®rst derivatised, then analysed to

produce a data set of molecular masses and

gas chromatographic elution times, which

can be analysed in a fashion analogous to

the analysis of microarray or NMR

metabolite data. Using GC/MS

techniques, Fiehn and co-workers

quanti®ed 326 distinct compounds from

Arabidopsis thaliana leaf extracts and

assigned metabolic phenotypes using the

data collected during their experiments.24

INFERRING GENE
FUNCTION FROM
EXPRESSION DATA
Each of the types of experimental data

discussed above can be used to infer

functional linkages between genes.

Speci®cally, the fact that two genes are

co-expressed under many different

conditions allows us to infer that the

genes work together in the same pathway

and therefore have related function.26,27

The microarray expression data for

each gene can be written as a vector of

expression levels measured under different

conditions, such as the sample expression

vectors at the bottom of Figure 1. Pairs of

genes are considered co-expressed if their

expression vectors are more similar than

might be expected at random. For

instance, if two genes, gene A and gene B,

show similar expression levels over a

range of time points or similar

experimental conditions, and gene A is

known to be involved in protein

synthesis, then gene B might also be

assigned a role in protein synthesis with

some degree of statistical con®dence.

Interestingly, this approach seems to

work for multicellular organisms, even

when cell-speci®c expression data have

not been collected. In an analysis of 553

microarray experiments from C. elegans28

genes exhibiting cell-speci®c expression,

such as intestinal or muscle-speci®c

expression, were discovered to be co-

expressed even though only whole

organism microarray data were collected.

In this case, it is likely that the very large

number of microarray experiments

compensated for the lack of cell-speci®c

data.

Non-normalised EST and SAGE

expression libraries can be treated in a

fashion analogous to microarray

expression measurements, treating

separate libraries as separate experiments

measuring gene expression levels, and
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approximating the expression of a gene as

the frequency of observations of that gene

in the library.29 Protein expression data

are currently sparse, but should be

interpretable in much the same general

manner.

Metabolic expression data require a

somewhat different treatment. In

microarray experiments, the expression of

every gene is measured in one

experiment. However, metabolite

expression data would seem to require

one experiment per gene, as the data

vector associated with a gene often

consists of the metabolite concentrations

measured when that gene is disrupted.

However, given measurements of

metabolic pro®les for suf®cient gene

disruptions, genes could be clustered by

their metabolic pro®les much as described

above.25 Other types of gene disruption

phenotypes can be treated similarly: genes

producing unusually similar knockout

phenotypes are assumed to be functionally

related.

Spatial expression patterns appear to be

the most dif®cult type of expression data

to handle. Observed patterns must be

converted into formalised descriptions of

pattern morphology, which can then be

compared with each other. In the case of

Xenopus embryos, such a formal

description was created for spatial gene

expression patterns, allowing

identi®cation of co-expressed genes.30

INFERRING GENE
FUNCTION FROM GENOME
SEQUENCE DATA
Many functional inferences can be made

purely on the basis of sequence data. At

the most basic level, functional inferences

from sequence data come in two general

¯avours: homology- and non-homology-

based inferences. Homology-based

inferences are those that derive from the

straightforward comparison of sequences

to ®nd groups of similar sequences, such

as by using the powerful BLAST31 or

Smith±Waterman32 algorithms. When

one of the members of a sequence group

has been characterised, that gene's general

function can be extended to the rest of

the members of that sequence family (eg

the sequence of gene X is similar to a

serine kinase, therefore gene X is

probably also a serine kinase.) This

approach is by far the dominant analysis

performed on large gene sets, such as in

the comparison of worm and yeast

proteins by Chervitz and co-workers.33

Perhaps more pertinent for comparison

with expression data are the non-

homology methods. These methods

operate on the principle that functionally

linked genes will share common aspects of

the contexts in which they occur.34,35

Context in this sense refers to the physical

locations of the genes, the nature and

identity of the adjacent sequences, the

organisms in which the genes occur, and

so on. Genes whose contexts are more

similar than expected by random chance

can be linked by this approach.

Non-homology methods include the

calculation of phylogenetic pro®les

describing the spectrum of organisms in

which a gene is present and absent,36 the

search for conserved gene neighbours37,38

or Rosetta Stone fusion proteins,39,40 and

the identi®cation of genes that are

physically closer to one another than

expected.41 Application of these analyses

leads to prediction of functional linkages

between genes that can be integrated

easily with expression data.27 Gene

function can then be inferred on the basis

of these linkages.

INTEGRATING
EXPRESSION DATA WITH
OTHER GENOME-WIDE
DATA FOR FUNCTIONAL
ANNOTATION
Expression data have been analysed

largely by clustering genes into co-

expression groups.26 However, several

other methods of handling expression

measurements exist that allow integration

of expression data with the sorts of large-

scale data introduced above. Perhaps the

simplest treatment is the superposition of

gene or protein expression levels onto
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networks of functionally linked

proteins.21,42 In this approach, illustrated

in Figure 2, relationships between genes

are ®rst established by another method,

such as measuring protein±protein

interactions using large-scale yeast two-

hybrid interaction assays or identifying

metabolic pathways. Each protein in the

network is labelled with its expression

level under some standard conditions.

Gene expression levels that were

measured following a perturbation to the

system can be interpreted more easily

using this network model for

visualisation. This approach can produce

an understanding of which of the possible

paths through a network are preferred by

the cell21,42,44 and has resulted in

re®nements to known biochemical

pathways, such as the addition of several

elements to the galactose utilisation

pathway.21

A second method integrates the

expression data more explicitly with other

data types for the purpose of assigning

genes into speci®c functional categories.

In this approach, a `feature vector' is

calculated for each gene. The feature

vector is a numerical list of quantitative

properties of that gene, such as its

expression under different

conditions,26,27,45 its conservation in

different genomes,36 the presence of

various regulatory sites upstream of the

Figure 2: One approach to combining expression data with other genome-wide data has
been simply to map expression data onto genetic or interaction networks derived by other
methods. Here, a fraction of a protein interaction network of yeast

6
is illustrated centred on

the transcriptional co-repressor protein Tup1. Each protein is illustrated as a coloured circle,
and each experimentally observed protein±protein interaction is drawn as a line connected
the interacting partners. The intensity of colouring in a circle re¯ects the level of expression of
the gene measured by DeRisi and co-workers in a partial TUP1 knockout relative to gene
expression in the wild type yeast.

43
Relative levels of expression are encoded as degrees of

grey-scale, with white representing a strong decrease in expression and black representing a
strong increase in expression of TUP1 cells relative to wild-type cells. For example, the
expression of TUP1 can be seen to be decreased in the partial TUP1 knockout, while the
expression of NRG1 is strongly increased. The network was plotted using the program Neato
(AT&T Labs)

Tup1

Hda1

Nrg1

H3

H4

Sir4

Arp4
Sir3

H2A1

H2B1

Hat2Gcn5

Hat1

R10A

Ser3

Jsn1

Dal80

Shu1

Gzf3

Cus1

Snp1
Mig1Mcm1

Mat1

Mta1

Mat2

QR12

YDR288w

Sti1

Hsc83

Imd2

Ssk2
Cpr6

Ssn6

6 & HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 2. NO 4. 1±12. DECEMBER 2001

Marcotte and Date



gene,46,47 and so on. Given suf®ciently

informative feature vectors, genes with

dissimilar functions can be distinguished

from each other using standard pattern

classi®cation algorithms.48 For the

purpose of assigning genes into functional

categories, an algorithm is trained to learn

which features in the feature vector allow

it to discriminate between a set of positive

and negative examples. As illustrated in

Figure 3, a properly trained algorithm

could be applied to a new gene to predict

if its function matches that of the genes in

the training sets. One such discrimination

algorithm is called a support vector

machine49 (SVM). SVMs rely on a

geometric interpretation of the feature

vectors, such that each vector describes

the coordinates of a point in some high-

dimensional space. The algorithms can be

thought to work by ®nding a plane in an

abstract high-dimensional space that

separates the positive examples from the

negative examples. SVMs have been

applied with success on both gene

expression data and phylogenetic pro®les

to assign genes into functional categories

(eg `cytoplasmic ribosome' or

`respiration').45,50 A second type of

discrimination algorithm working on

entirely different principles is that of

inductive logic programming and rule

learning. Such algorithms suggest speci®c

traits of the feature vector that provide the

discrimination. A rule derived by this

method, from the work of King et al.,51 is

`If the percentage of lysine in the encoded

protein is .6.5 per cent, then the gene

functions in macromolecular metabolism'.

A third method provides an even more

general mode for integrating disparate

data for functional annotation. In this

approach, pairwise relationships between

genes are inferred based upon whatever

data are available. Ideally, each linkage is

ascribed a con®dence or statistical

signi®cance. When taken all together,

these pairwise linkages describe the

organisation of genes into a network.27

Figure 4 shows an example of such a

network calculated for the genes of yeast.

Function can then be assigned to

uncharacterised genes based upon their

linkages to characterised genes and

pathways. Inferences from different

methods can be easily combined in this

framework, provided the measures of

con®dence are in some way comparable

from method to method. This method

also allows easy integration of protein

interaction and pathway data, as these are

naturally expressed as linkages between

genes.

MULTIPLE OBSERVATIONS
LEAD TO ROBUST
INFERENCES
Unfortunately for molecular biologists,

few of these computational analyses,

when taken in isolation, provide complete

functional information for large numbers

of genes. The computational functional

inferences discussed above are largely

independent of one another. Therefore,

inferences can be combined

Figure 3: An illustration of a discrimination
algorithm. Genes are mapped into an
abstract high dimensional space by virtue of a
vector of quantitative features, such as the
expression vectors in Figure 1. A new gene
(bold X) can be assigned a function by testing
whether its position in this space is closer to
the positive (grey circles) or negative (black
squares) examples in a the training set of
genes of known function. In this case, the
features of the new gene show a better
match to the features of the positive set, and
the new gene would be assigned their
function
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synergistically. If a linkage is derived from

several independent methods, with each

method i returning a probability of the

link occurring by random chance

p(link | method i), the con®dence in the

linkage can be calculated as the product of

the probabilities from each method,

Ði p(link | method i).

In truth, the methods discussed above

are not strictly independent. Nonetheless,

they are generally derived from different

underlying principles (eg `functionally

related genes have related expression'

versus `functionally related genes are co-

inherited'), so combinations of these

methods provide extremely robust

Figure 4: In this ®gure, expression data are integrated with data generated from other
methods by expressing functional inferences from each method as a functional linkage between
a pair of genes, then gathering together all pairwise linkages and plotting the resulting network.
This network shows a subset of functional linkages between genes of yeast generated by non-
homology methods such as phylogenetic pro®les

36
and Rosetta Stone linkages,

39
as well as links

between co-expressed yeast genes
27

and physically interacting proteins.
6

Here, the SNP1 gene
is linked to genes whose functions vary from RNA splicing to metabolism. Links generated by
different methods tend to reinforce each other. For example, links predicted between SNP1
and the hexokinase and glucokinase genes HXK1 , HXK2 and GLK1 are supported by the
observed physical interaction between SNP1 and GCR2 , a transcriptional activator involved in
glycolytic gene expression
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functional inferences.27,50 Algorithms are

available that explicitly measure the

dependencies between different data sets

and then weight the information

accordingly. This process is particularly

easy for data organised into feature

vectors, in which the statistical covariance

between each pair of columns in the

feature vector can be calculated to

describe the relative independence of the

features.

EXPRESSION
ORTHOLOGUES
One possibility for increasing the strength

of functional inferences derived from

expression data is to combine expression

data from different organisms. For

example, the yeast glycolytic genes

glyceraldehyde-3-phosphate

dehydrogenase, phosphoglycerate mutase,

phosphoglycerate kinase and enolase are

strongly co-expressed across many

conditions; the mouse homologues show

a similar coexpression.26,52 However,

systematic analysis of expression and

orthology is lacking. By de®nition, this

approach will only work for conserved

systems of genes. However, the potential

exists for substantially reducing the

number of false positive functional

partners of a gene by imposing the

simultaneous restrictions of sequence

conservation of both partners across two

or more organisms and co-expression of

both partners in each of these organisms

(Figure 5). This is a very strict

requirement, and as more expression data

become available from differing

organisms, this idea can be put to the test

more thoroughly.

INTEGRATING
EXPRESSION DATA WITH
BIOMEDICAL LITERATURE
IN AN AUTOMATED
FASHION
Finally, many biologists wish to integrate

the biological literature with the other

genome-wide data sets. Working with

biological literature, a very large corpus of

text with more than 25 years worth of

abstracts and papers online, in fact can

prove quite dif®cult. Problems arise

because of the sheer variation in language

and descriptions: terms change over time,

synonyms exist for many genes and

techniques, and authors often have

individual preferences for describing their

work. Lack of standardisation, while

making the literature much more

interesting to read, makes extracting

information automatically a tedious task.

Many groups are focusing on how to

extract data ef®ciently, as witnessed by the

devotion of a special session to this topic

at the coming 2002 Paci®c Symposium of

Biocomputing. These efforts have led to

the establishment of a number of databases

of gene and protein function, many of

which are described in the annual January

database issue of Nucleic Acids Research.

However, one very simple approach

has been used to extract gene function

from Medline without the dif®cult step of

reading the literature. This approach,

termed `co-citation' or `bibliometrics', creates

links between genes whose names are

mentioned in the same article.53 The

more frequently the genes are co-cited

compared to cited independently, the

Figure 5: One approach for increasing the
accuracy of functional inferences from
expression data is to calculate expression
orthologues. In this case, genes A and B co-
express in one organism; the orthologues of
A and B co-express in a second organism.
Such pairs of genes have multiple constraints:
they must be present in multiple organisms
and co-express in each. The probability of
satisfying such multiple constraints by
random chance is quite low. As a
consequence, such genes are expected to be
tightly functionally coupled
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tighter the association inferred. This

clever approach allows very easy

extraction of known functional linkages

between genes. The links are reasonably

accurate, given their unusual derivation,

and so provide one with means to capture

the thousands of known relationships for

integration with linkage data produced by

other methods. Recently, Jenssen and co-

workers54 have utilised this method to

create a gene-to-gene co-citation

network for 13,712 named human genes

by analysis of titles and abstracts in over

10 million Medline records, and were

able to show that literature co-occurrence

associates biologically related genes.

Analysis of the links suggests an accuracy

of approximately 60±70 per cent. These

co-citation links can be used to

benchmark the pairwise links generated

by other methods or can even be added to

the other sets of links to produce more

complete gene networks.

CONCLUSIONS
It is an obvious fact that the increasing

amounts and sources of biological data

require creative methods of integration:55

each of the sources of data, from

expression measurements to genome

sequences, gives only partial clues to the

functions of genes. The inference of

function by these methods may have an

intrinsic error rate, as even functional

assignment by direct sequence homology

shows an appreciable error rate.56 Even

the existing annotation for genes of

known function is likely to be error-

prone.57 Compounding this inherent

dif®culty in inferring function is the fact

that genes are probably likely to play

multiple roles in the cell, as con®rmed by

large-scale protein interaction assays

showing that the majority of cellular

systems are very closely interlinked.1±3 It

is therefore likely that large-scale

functional inference will only come from

integrating all of the disparate data

available, each piece of data allowing

some small inferences to be made.

Though these seem to be small, faltering

steps, each takes us closer to our ®nal goal

of deciphering the genome.
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