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Abstract 

Background:  Identifying all protein complexes in an organism is a major goal of systems 

biology.  In the past 18 months, the results of two genome-scale tandem affinity 

purification-mass spectrometry (TAP-MS) assays in yeast have been published, along 

with corresponding complex maps.  For most complexes, the published data sets were 

surprisingly uncorrelated.  It is therefore useful to consider the raw data from each study 

and generate an accurate complex map from a high-confidence data set that integrates the 

results of these and earlier assays. 

 

Results:  Using an unsupervised probabilistic scoring scheme, we assigned a confidence 

score to each interaction in the matrix-model interpretation of the large-scale yeast mass-

spectrometry data sets.  The scoring metric proved more accurate than the filtering 

schemes used in the original data sets.  We then took a high-confidence subset of these 

interactions and derived a set of complexes using MCL.  The complexes show high 

correlation with existing annotations.  Hierarchical organization of some protein 

complexes is evident from inter-complex interactions. 

 

Conclusions:  We demonstrate that our scoring method can generate an integrated high-

confidence subset of observed matrix-model interactions, which we subsequently used to 

derive an accurate map of yeast complexes.  Our results indicate that essentiality is a 

product of the protein complex rather than the individual protein, and that we have 

achieved near saturation of the yeast high-abundance, rich-media-expressed “complex-

ome.” 

 

Background 

The molecular machines that carry out basic cellular processes are typically not 

individual proteins but protein complexes.  Even in the relatively simple model organism 

Saccharomyces cerevisiae, most machines that process and store biological information 

are in fact large protein complexes comprised of many subunits. 

 

The path from measuring protein interactions to defining complexes has been well 

studied.  Experimental and computational methods have provided over 50,000 putative 
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yeast protein-protein interactions to date, although a substantial fraction of these may be 

spurious[1, 2].  An array of analytical methods aimed at generating high-quality 

complexes from these data have been applied, including both unsupervised [3-5] and 

trained [6, 7] techniques.  Other genomic and proteomic data sets, such as gene 

expression, knockout phenotype, subcellular localization, and genetic interaction profiles, 

and phylogenetic profiles [5, 6, 8-10], have also been integrated with the raw interaction 

data in an effort to broaden and deepen our ability to accurately define protein 

complexes. 

 

Two recent genome-scale tandem affinity purification/mass spectrometry  (TAP-MS) 

experiments perfomed by Gavin et al. [11] and Krogan et al. [12], have produced an 

enormous amount of new data, allowing a more complete analysis of the universe of 

yeast protein complexes.  However, the complex maps published independently by the 

two groups show a surprising lack of correlation, which can only be partially explained 

by the different analytical methods applied after generating the raw data [1, 13].  

 

TAP-MS data typically consist of a tagged “bait” protein and the associated “prey” 

proteins that co-purify with the bait.  Interaction data sets are generated from this raw 

data using either the spoke method, which considers bait-prey interactions, or the matrix 

method, which includes all prey-prey interactions from a given bait pull-down [14].  As 

the affinity purification process generally isolates stable complexes, there is no clear-cut 

way to differentiate between direct physical interactions and indirect interactions 

mediated by other members of the complex – or, for that matter, other proteins that 

appear simply a result of experimental noise.  Thus, the spoke model contains both direct 

physical interactions and a sampling of the indirect interactions within a complex, plus 

some amount of noise, while the matrix model captures a much larger number of true 

indirect interactions at the price of decreased accuracy from linking every spurious 

protein to every “real” one, as well as linking proteins from heterogeneous complexes 

that each contain the bait.  While some efforts have been made to use a filtered subset of 

matrix-model interactions to improve accuracy [9, 15, 16], analysis of mass spectrometry 

interaction data has typically been carried out using the spoke model [3, 5].   
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Here we offer a simple yet robust statistical scoring scheme for assigning confidence to 

observed interactions.  The scheme is based on comparing observed versus expected 

numbers of interactions in the matrix model of protein-protein interactions, and provides 

greatly increased recall and/or precision over the standard spoke model interpretation.  A 

further advantage of the system is that it can be used to integrate data sets from different 

sources.  We use the scoring scheme to combine the Gavin et al. [11], Krogan et al. [12], 

and Ho et al. [17] co-complex data sets and define a high-quality subset comprised of 

1689 proteins in 390 complexes.  We further show that essential proteins strongly cluster 

together, supporting a complex-centric rather than gene-centric basis for essentiality for a 

large fraction of essential genes. 

 

 

Results 

In a large-scale interaction assay, we consider each protein’s interactions to be a random 

sample from the population of observed interactions.   A simple and general theoretical 

error model, based on the hypergeometric distribution, can be used to calculate the 

probability of observing each interaction from a random background.  This model builds 

on related models that have previously been applied to several linkage and interaction 

types [18-21].  Within a given dataset, the probability (P-value) of an interaction between 

proteins A and B being observed at random is: 

 

p( # interactions ≥   k | n, m, N) ∑
=

=

),min(

),,|(
mn

ki

Nmnip , where 

 

p( i | n, m, N) =  









−

−






m

N

im

nN

i

n

 

 

where k = the number of times the interaction between A and B is observed, n and m are 

the total number of interactions for proteins A and B, and N is the total number of 

interactions observed in the entire data set.  When applied to the matrix model 
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interpretation of protein interactions, the scoring scheme can identify highly accurate 

subsets of interactions.  The process is illustrated in Figure 1.  

 

We generated matrix-model interpretations of the Ho, Gavin, and Krogan datasets.  The 

only other TAP-MS data set of significant scale [22] is a subset of [11] and was omitted.  

We then applied the scoring method to each, applying to each interaction in a dataset a P-

value calculated from the observations within that set.  We then evaluated the quality of 

the scoring by calculating recall and precision versus the set of protein complexes 

manually defined from literature sources by the Munich Information center on Protein 

Sequences (MIPS) [23].  Recall was scored as TP / (TP + FN), where TP, true positives, 

are experimental interactions that are in the MIPS set and FN, false negatives, are the 

MIPS interactions not present in the experimental data.  Precision was defined as TP / 

(TP + FP), where TP is as above and FP, false positives, are interactions observed 

experimentally where both corresponding proteins are in the MIPS set, but the interaction 

is not.  For all three data sets, the method displays improved recall and/or precision 

relative not only to the spoke model interpretation of the same dataset, but also to the 

group’s published complexes (Figure 2).  As each co-complex data set represents an 

independent experimental observation, the probabilities can be combined to provide 

higher confidence in repeated observations.  We therefore combined the three scored data 

sets by multiplying the P-values for a given interaction across all three datasets, applying 

a P-value of 1 if the interaction was missing from a dataset.  The combined interaction 

dataset, which we call the Probabilistic Integrated Co-complex (PICO) network, is more 

accurate and provides greater coverage than any of the individual datasets it comprises. 

 

The PICO network contains a large number (~160,000) of protein-protein interactions, 

each with a relative confidence measure as described by the P-value.  The full list is 

available for download [see Additional File 1].  We filtered out low-confidence 

interactions before deriving complexes from the data, beginning by rank-ordering the 

interactions by P-value, lowest to highest.  We then applied a series of increasingly 

stringent expected (E) value thresholds, where ∑
=

=

n

i

iPE
1

, starting with E=1 and 

tightening in order of magnitude increments to E=10
-6

.  The number of interactions in the 
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PICO network at each threshold is shown in Figure 3A. 

 

We derived a set of complexes at each threshold by using MCL [24], an implementation 

of a Markov clustering algorithm.  MCL was evaluated in [25] and was used to derive 

complexes from the raw data in [12].  To evaluate the accuracy of each set of complexes, 

we measured the Hubert statistic, H, of the derived complexes versus a reference set of 

complexes [26].  Briefly, calculating H involves generating a matrix M of protein pairs 

(i,j) where M(i,j) = 1 if the proteins are in the same complex and 0 otherwise.  The 

correlation between the experimental and reference matrices is then measured, resulting 

in a score from -1 to 1, with 1 implying identical complex assignments and values near 

zero indicating random assignment.  We measured the Hubert statistic of complexes 

measured at each threshold against the set of curated MIPS complexes [23] with 

ribosomal subunits removed and against a filtered set of Gene Ontology (GO) Cellular 

Component (CC) annotations (see Methods).  The correlations generally improve with 

increasing stringency (Figure 3B), although the rate of increase in correlation with GO 

component drops off sharply after the 10
-2

 cutoff.  This improvement in accuracy comes 

at the price of decreasing coverage, reflected in the decreasing number of interactions at 

each threshold as shown in Figure 3A.  In an attempt to balance accuracy and coverage, 

we selected the complexes derived from the E=10
-2

 threshold, hereafter called the E-2 

complexes, for further study.   

 

Features of the E-2 complexes 

The E-2 complexes contain 1689 proteins grouped into 390 clusters of sizes ranging from 

two to 35 subunits.  A network view of the complexes, generated using Cytoscape [27], is 

shown in Figure 4; the Cytoscape file is available for download [see Additional File 2].  

To measure the accuracy of individual complexes, we tested each for significant 

enrichment of GO component annotation.  GO component annotations enriched at P<0.01 

(with Bonferroni correction for multiple hypothesis testing) are noted for each complex 

[see Additional File 3].  The Simpson coefficient of each enriched annotation is also 

listed as an easily understood metric for measuring the completeness with which any GO 

term describes a complex (or vice versa). 
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The large fraction of E-2 complexes that correspond to existing annotations suggest that 

the data set is highly accurate.  Of the 132 complexes with four or more subunits, 69% 

(91) are highly enriched for one or more specific GO component annotations; of the 44 

complexes of size eight or larger, 84% (37) are so annotated.  Furthermore, there are 

virtually no uncharacterized genes in these large complexes, and the few that appear have 

relatively weak connections to the other members of their respective clusters.  This 

suggests that the yeast community has achieved a fairly complete description of a large 

fraction of the “complex-ome,” at least for complexes containing many proteins.  In fact, 

only one complex of size four or greater consists entirely of unnamed subunits and thus 

could be considered truly novel (complex C132, composed of proteins YAL049C, 

YDL025C, YGR016W, and YHR009C). 

 

Several E-2 clusters represent amalgamations of known complexes.  The MCL algorithm 

assigns each protein to exactly one complex, so protein complexes with shared subunits 

are sometimes found combined into a single cluster in the E-2 complexes.  The C1 

cluster, for example, includes RNA polymerase I, II, and III, largely because all three 

enzymes contain the Rpb5, Rpb8, Rpb10, and Rpo26 subunits.  Likewise, complex C7 

contains the TAFIID complex and the SAGA transcription factor/chromatin remodeling 

complex; these complexes share the Taf5, 6, 9, 10, and 12 proteins.  It seems clear from 

the RNA polymerase case that the E-2 clusters occasionally contain discrete complexes 

that presumably do not physically interact. 

 

Even the clusters that lack significant GO terms tend to have subunits that share similar 

free-text descriptions in the Saccharomyces Genome Database (SGD) [28].  For example, 

complex C44 contains eight proteins, all of which are essential.  Of these, seven are 

explicitly described in SGD as being involved in 60S ribosome biogenesis or as 

components of 66S pre-ribosomal particles, and the eighth is involved in export of pre-

ribosomal large subunits from the nucleus.  No GO term enrichment is found because the 

CC annotation is typically “nucleolus,” a weak term excluded from our analysis (see 

Methods).  Likewise, unannotated complexes C20, C30, and C78 contain 13, 10, and 5 

proteins, respectively (10, 9, and 5 essential), that are all known or suspected to be 

involved in ribosome biogenesis.  Other unannotated complexes include C43, eight 



 8

largely nonessential proteins in the well-described cyclin/cyclin-dependent kinase group; 

C51, seven nonessential proteins involved in catabolite inactivation of FBPase; and C72, 

six proteins (five essential), of which five are involved in retrograde Golgi-to-ER 

trafficking and the sixth, Sec39, is of unknown function but “proposed to be involved in 

protein secretion.” 

 

Hierarchical structure of co-complex network 

The high-confidence subset of the PICO network from which the E-2 complexes were 

derived contains 5,352 interactions; of these, 4,411 are present in the E-2 complex map of 

390 complexes.  The remaining 941 interactions all occur between subunits of different 

complexes.  We examined the structure of these interactions by collapsing each complex 

into a single node and looking at the interactions between complexes.  The resulting 

intercomplex network, depicted in Figure 5, suggests a hierarchical organization of 

protein complexes in the cell.  Over one-third of the interactions (341, or 36%) appear in 

just three clusters:  the U4/U6 x U5 tri-snRNP complex and its neighbors (191 

interactions), the C20/C30/C44/C78 ribosome biogenesis nexus (86 interactions), and the 

C17 histone-associated complex (64 interactions).  In all three cases, the intercomplex 

interactions link complexes that are involved in closely related physiological processes.  

Taken together, these observations suggest that yeast proteins complexes exhibit a 

hierarchical organization, with complexes interacting with each other in a well-ordered 

fashion. 

 

Essentiality of protein complexes 

The E-2 network shows an enrichment of essential genes in general:  the 1689 proteins in 

the network comprise 29% of all yeast proteins, but contain 58% of all essential proteins 

(602 essentials out of 1033 total).  The descriptions above, as well as a glance at the 

complex map in Figure 4, suggests concentration of essential proteins into some 

complexes, and exclusion from others.  To measure whether there is such a concentration, 

we considered the distribution of complexes with respect to the fraction of essential 

proteins in each and sorted this distribution into ten uniformly spaced bins.  We 

bootstrapped a background distribution by randomly assigning the same number of 

essential genes to an identical set of complexes, repeating this process 10,000 times, and 
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calculating the mean for each bin.  We then took the log of the ratio of the observed to the 

random frequencies in each bin.  The results, plotted in Figure 6, show clear enrichment 

for complexes either mostly essential (>70%) or almost completely nonessential (<10%), 

with underrepresentation in intermediate values. 

 

Discussion 

Modular nature of essentiality 

The concentration of essential proteins into complexes suggests that essentiality is, in 

many cases, a product of complex function rather than individual protein function.  This 

phenomenon has been observed by the Barabasi group [5] in an analysis of Ho and Gavin 

2002[22].  In using the raw data from these assays, the prior study assigns each bait pull-

down to a discrete complex and does not correct for sampling the same complex with 

multiple baits.  Thus, for example, purifications derived from TAP-tagged Nsp1, Nup60, 

Nup82, and Nup116 are all considered to be discrete complexes with a high fraction of 

essential proteins, while in reality these factors are all constituents of the same nuclear 

pore complex.   

 

The current analysis provides both more accurate definition of complexes and, owing to 

the breadth of the raw data, greater coverage of yeast proteins.  The corresponding signal 

for essentiality of complexes becomes very strong.  In the E2 complex set, there are 64 

complexes with >70% essential subunits, containing 330 essential out of 379 total 

proteins – accounting for 32% of all essential genes in yeast.  Of these complexes, the 35 

largest contain 271 essential proteins (of 320 total), or 26% of all essential genes (Table 

1).  Other complexes that show strong essentiality include C2, which corresponds to the 

26S proteasome complex.  The complex is 58% essential but the diagram of the cluster 

reveals that it has a number of loosely connected proteins that are not annotated as 

proteasomal.  The 24 core subunits in the diagram are 71% essential.  Also, the 

previously described C7 complex is comprised of the nonessential SAGA complex and 

the essential TAFIID complex (Figure 4). 

 

Comparison to Collins et al. 

After submission of this article, a study by Collins et al. was published in which the 
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Gavin and Krogan TAP-MS data sets were re-analyzed [29].  Using a supervised 

algorithm derived from Bayesian methods and optimized with empirically-derived 

parameters, the study posited over 9,000 high-confidence interactions while labeling 

many previously published interactions as being of lower confidence.  Comparing the 

PICO network at the E = 10
-2

 threshold (E-2; 5,352 interactions) to the Collins results 

shows an overlap of 4,356 interactions (Figure 7).  The interactions that are unique to the 

Collins data set are highly enriched for ribosomal proteins:  of the 4,714 interactions 

found in Collins but not PICO, 2,964 involve ribosomal proteins.  As these proteins are 

commonly co-purified with tagged baits in TAP purifications (and subsequently 

identified by mass spectrometry), they are interpreted as promiscuous interactors in the 

matrix model of protein connectivity, which considers bait-prey as well as all prey-prey 

interactions in a given purification.  Such high-degree interactors are penalized under the 

hypergeometric scoring model; therefore, while all such interactions are scored in our 

model, virtually none exceed the stringent score threshold we applied. 

 

Further comparison shows that the hypergeometric scoring method and the Collins 

method yielded data sets of nearly equal accuracy.  We rank-ordered the two sets of 

interactions by their respective scores, divided each into bins of 500 interactions, and 

then plotted the cumulative recall and precision of each versus MIPS co-complex 

interactions [see Additional File 5].   The Collins data set achieves greater coverage than 

the PICO network, at somewhat lower overall accuracy, when performance is calculated 

against the entire MIPS reference.  The difference is due almost entirely to the inclusion 

of ribosomal protein interactions in Collins: when the ribosome is removed from the 

MIPS reference set, both networks provide nearly identical recall (~34%) and precision 

(~81%).  That the networks generated by the two methods overlap so strongly, despite 

our inclusion of the Ho dataset and use of a much higher confidence threshold for the 

Krogan raw data, suggests the networks capture a highly accurate subset of yeast co-

complex interactions, and that the simple probabilistic method offered in this study is an 

effective tool for assigning relative confidence rankings to observations in large-scale 

data sets. 

 

It is worth noting that even the highest-scoring interactions in the two analyses do not 
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reach 100% precision versus the MIPS reference.  This is in part due to the 

incompleteness of the reference set.  An interaction is defined as a false positive if and 

only if both its corresponding proteins are present in the reference set but the interaction 

is not.  Thus, true interactions that are detected experimentally but absent from the 

reference set will be scored as false positives (provided the proteins are present in the 

reference set).  We observe several cases of this.  For example, the Tub4 gamma tubulin 

complex is composed of Spc97, Spc98, and Tub4, as defined by GO Cellular Component 

and MIPS annotation.  The E2 derived complex also includes Spc72, the spindle pole 

body component which interacts with the Tub4p complex [30].  The MIPS reference does 

not include Spc72 in the gamma tubulin complex but does include the protein in the 

“Spindle Pole Body Components” collection of proteins.  Thus interactions between 

Spc72 and other members of the gamma tubulin complex, while almost certainly “true” 

co-complex interactions, are scored as false positives when calculating precision versus 

MIPS.  All such experimentally detected inter-complex interactions are absent in the 

MIPS reference set.  Thus the incompleteness of the reference set prevents a high-

accuracy experimental data set from achieving perfect precision. 

 

  

Conclusions 

We have described a simple yet robust unsupervised method of assigning confidence 

levels to interactions observed in a large-scale assay, as well as combining data from 

independent assays into an integrated whole that can be used for further study.  We used 

this method to integrate data from three large-scale affinity purification-mass 

spectrometry assays in yeast to generate a high-confidence subset of interactions, from 

which we derived an accurate set of protein complexes.  The recall of MIPS co-complex 

interactions indicates that no more than 46% of the total co-complex interactome in yeast 

has been assayed by TAP-MS methods (with only 34% in the high confidence E2 set ).  

Nonetheless, the high proportion of complexes that correspond to existing annotations 

and the small number of uncharacterized genes present in our high-confidence data 

strongly suggest that the community has largely saturated the fraction of the complex-

ome that is accessible to the methods (TAP-MS) and conditions (aerobic growth in rich 

media) that have been explored so far.  Therefore, it would likely be fruitful to explore 
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other conditions and growth states to extend the interactome. 

 

Our complex data also support the notion that, in many cases, essentiality is tied not to 

the protein or gene itself, but to the molecular machine to which that protein belongs.  We 

can clearly separate the majority of complexes into essential and nonessential.  The few 

that are mixed – for example, the SAGA/TAFIID complex – lead to interesting questions 

about the essentiality of specific interactions [31].  We anticipate that the complex 

descriptions offered here, as well as the general scoring method, can be used in other 

functional genomics and systems biology studies. 

 

 

Methods 

Data sources 

Data from Ho et al. were taken from Table S1 of [17].  Interactions from Gavin et al. 

were taken from Supplementary Table 1 of [11].  In both cases, bait-prey pairs were 

generated from the list of purifications, with the bait removed from the prey list if 

applicable.  Interactions from Krogan et al. [12] were taken from the raw LCMS and 

MALDI purification data.  Bait-prey pairs from LCMS purifications with confidence 

>=99.6 and MALDI purifications with score >=3.4 were included.  Matrix-model data 

sets were generated by considering all prey-prey pairs if both prey were purified from the 

same bait. 

 

Reference data sets 

MIPS filtered data:  The MIPS curated complex data were downloaded from mpact[23].  

All high-throughput data, as well as the large and small ribosomal subunits, were 

excluded.  An all-by-all set of interactions was generated from each complex and used as 

a reference to calculate recall/precision curves of experimental data.  The co-complex 

data was used to calculate the Hubert statistic. 

 

GO filtered reference set:  The complete yeast GO Cellular Component ontology was 

downloaded from the Saccharomyces Genome Database [28] on 5 December 2006.  

Annotations were sorted by the number of genes to which they applied; all annotations 
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equal to or larger than the size of the “small cytoplasmic ribosomal subunit” were 

discarded.  The resulting set of annotations is mostly complexes, with a small number of 

discrete cellular localizations included.  This annotation set was used to calculate GO 

term enrichment and the Hubert statistic. 

 

Analaytic techniques 

The MCL program was downloaded from [24].   For each E-value threshold of the PICO 

network, MCL was run with the following parameter space:  -I, 1.8 to 3.0 in 0.2 

increments; -C, 0.5 to 1.5 in 0.25 increments; -S, 0 to 7.  The Hubert statistic (H) was 

calculated for each MCL result against the GO filtered reference set and the MCL result 

with the highest H score was considered the optimal result for that E-value.  The -S 

parameter was found to have no effect on our results. 

 

Calculation of the Hubert statistic, H, was performed as described in [26].  As the 

matrices must be equal size, the calculation was performed on the potential interaction 

space defined by the set of proteins present in both the experimental and reference protein 

sets. 

 

The Simpson coefficient, Cs of similarity between sets of proteins A and B,  is:  

Cs = ( # proteins in A and B ) / min(# proteins in A, # proteins in B) 

 

The list of essential ORFS was downloaded from the Saccharomyces Genome Database.  

We considered only verified or uncharacterized ORFs. 
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Figure Legends 

 

Figure 1.  Applying the matrix-model scoring algorithm.   The four subunits of the 

DNA primase core complex are detected using the scoring algorithm.  (A)  In the Gavin 

et al. TAP-MS data set, Pol1 and Pol12 were purified as bait and their corresponding 

bait-prey, spoke model interactions are shown in blue (plus number of additional prey 

identified shown in parentheses).  In the Krogan et al. assay (shown in orange), the same 

baits plus Pri1 were purified.  (B)  In the matrix model, both bait-prey and prey-prey 

interactions are considered.  Within a given dataset, the total number of links observed 

between each pair of proteins is recorded and the P-value calculated as described in the 

text.  The PICO network was generated by multiplying P-values for the same interaction 

derived from different data sets, e.g. Pol1-Pol12 is discovered in both Gavin and Krogan 

and scored accordingly. (C)  The PICO network integrates probability scores from all 

data sources, here represented as –ln(P-value).  Values in black are final PICO scores; 

separate scores from Gavin et al. (blue) and Krogan et al. (orange) are shown where 

applicable.  No data from Ho et al. was relevant to this example. 

 

Figure 2.  Performance curves of the probabilistic scoring method.  We measured the 

performance of the various datasets against a reference set consisting of a matrix-model 

interaction set generated from MIPS curated complexes, excluding the large and small 

ribosomal subunits (which would otherwise account for over half of the interactions in 

this set).    Single points represent an entire dataset.  Curves represent a dataset that has 

been scored using the hypergeometric scoring algorithm, rank ordered, and plotted with 

each symbol representing the cumulative addition of the 500 next highest scoring 

interactions (i.e. tail of the curve represents the entire dataset).  The scoring scheme 

outperforms the raw data as well as the filtered, published sets in all cases; the integrated 

PICO net outperforms the individual scored data sets, and the derived complexes are 

slightly more accurate than PICO (for all thresholds; data not shown). 

 

Figure 3.  Effect of thresholds on network size and derived complex accuracy.  (A)   

Interactions in the PICO network were rank ordered, and the E-value was calculated as 

the sum of P-values.  The number of interactions at each E-value threshold was counted; 
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the total decreases as an increasingly stringent threshold is applied.  (B) At each E-value 

threshold, the subset of interactions was clustered with MCL with parameters that 

optimized correlation with the filtered set of GO component annotations [see Methods].  

The correlation with GO component (filled circles) and MIPS complexes (hollow circles) 

generally improves with the stringency of the E-value cutoff.  We judged that the 10
-2

 

cutoff provides a reasonable tradeoff between increasing accuracy and decreasing 

coverage, and chose this subset for further study. 

 

Figure 4.  A subset of the E-2 complex map.  After applying the E=10
-2

 threshold to the 

PICO interaction set, the subset of 5,352 interactions was clustered with MCL, using 

parameters that maximized correlation with a filtered set of GO component annotations.  

Interactions within clusters (4,411) were plotted with Cytoscape using the included 

“organic” layout algorithm.  Interactions between clusters (941) were omitted for clarity.  

Yellow nodes indicate essential proteins; red, nonessential.  For the full image please see 

Additional File 4. 

 

Figure 5.  Inter-complex interactions.  Interactions in the E-2 complex map represent 

4,411 of the 5,352 interactions in the PICO network at the E=10
-2

 threshold.  The 941 

remaining protein-protein interactions (PPI) collapse to 248 complex-complex 

interactions.  Here we map 128 inter-complex interactions, each comprising two or more 

protein-protein interactions (821 PPI total); singletons are omitted for clarity.  Nodes 

represent E-2 complexes:  yellow indicates >70% essential subunits; labels indicate 

highest-scoring GO component, where applicable.  Edge thickness reflects number of 

interactions between complex subunits, ranging from two (thinnest) to 24 or more 

(thickest) PPI; number of interactions is shown on each edge.  Density of PPI between 

complexes of similar function (e.g. 190 PPI from U4/U6/U5 tri-snRNP complex to 

neighbors; 86 PPI between C20/C30/C44/C78 ribosome biogenesis modules; 64 PPI 

linking C17 histone-associated complex to neighbors; shaded in blue) illustrates 

hierarchical nature of yeast complex network. 

 

Figure 6.  Essential proteins are concentrated in a subset of complexes.  The 

distribution of essential proteins in complexes was compared to a randomized 
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background.  The fraction of essential proteins in each complex was calculated, sorted 

into equal-sized bins, and compared to an expected background generated by randomly 

assigning essential proteins to the same set of complexes.  The log ratio of observed to 

expected frequency for each bin is plotted here: positive values indicate observed 

frequency above random; negatives indicate below random.  The distribution illustrates 

the concentration of essential proteins in some complexes, and a corresponding absence 

of essentials in others.  Bars marked with an asterisk represent statistically significant 

deviations from random expectation (P<10
-3

). 

 

 



 20

Tables 
 
 

Complex 
ID Size 

% 
Essential Most significantly enriched GO CC  term  Complex members 

C1 35 74% DNA-directed RNA polymerase III complex DST1, IWR1, RET1, RPA12, RPA135, RPA14, RPA190, RPA34, 
RPA43, RPA49, RPB10, RPB11, RPB2, RPB3, RPB4, RPB5, RPB7, 
RPB8, RPB9, RPC11, RPC17, RPC19, RPC25, RPC31, RPC34, 
RPC37, RPC40, RPC53, RPC82, RPO21, RPO26, RPO31, SPT4, 
TFG1, TFG2 

C4 27 93% small nucleolar ribonucleoprotein complex BMS1, DIP2, ECM16, EMG1, IMP3, MPP10, NAN1, NOC4, NOP14, 
POL5, PWP2, SOF1, UTP10, UTP13, UTP14, UTP15, UTP18, 
UTP20, UTP21, UTP30, UTP4, UTP5, UTP6, UTP7, UTP8, UTP9, 
YGR210C 

C11 20 75% mRNA cleavage and polyadenylation 
specificity factor complex 

BUD14, CFT1, CFT2, FIP1, GIP3, GLC7, GLC8, MPE1, PAP1, 
PFS2, PTA1, PTI1, REF2, SDS22, SSU72, SWD2, SYC1, YPI1, 
YSH1, YTH1 

C12 20 85% U4/U6 x U5 tri-snRNP complex AAR2, BRR2, DIB1, LEA1, LSM8, PRP11, PRP21, PRP3, PRP31, 
PRP38, PRP4, PRP6, PRP8, PRP9, RSE1, SMX2, SNU114, 
SNU23, SNU66, SPP381 

C13 18 72% proteasome core complex, alpha-subunit 
complex (sensu Eukaryota) 

FLC2, GRH1, OSM1, PRE1, PRE10, PRE2, PRE3, PRE4, PRE5, 
PRE6, PRE7, PRE8, PRE9, PUP1, PUP2, PUP3, RED1, SCL1 

C14 18 72% snRNP U1 BRR1, LUC7, MUD1, NAM8, PRP39, PRP40, PRP42, SMB1, 
SMD1, SMD2, SMD3, SME1, SMX3, SNP1, SNU56, SNU71, STO1, 
YHC1 

C20 13 77% (no significant annotation) BRX1, CIC1, DRS1, ERB1, FPR4, HAS1, MAK5, NOC2, NOC3, 
PUF6, PWP1, RRP5, YTM1 

C26 11 73% eukaryotic translation initiation factor 2B 
complex 

CDC123, GCD1, GCD11, GCD2, GCD6, GCD7, GCN3, PET111, 
SUI2, SUI3, YVH1 

C30 10 90% (no significant annotation) EBP2, MRT4, NOG1, NOP15, NOP2, NOP7, NUG1, RLP7, RPF2, 
TIF6 

C38 8 88% nuclear pore GLE2, NIC96, NSP1, NUP116, NUP159, NUP49, NUP57, NUP82 

C41 8 88% DASH complex ASK1, DAD1, DAD2, DAD3, DAM1, DUO1, SPC19, SPC34 

C42 8 100% exocyst EXO70, EXO84, SEC10, SEC15, SEC3, SEC5, SEC6, SEC8 

C44 8 100% (no significant annotation) DBP10, NIP7, NSA1, RIX7, RPF1, RRP1, SPB1, SPB4 

C46 7 86% Arp2/3 protein complex ARC15, ARC18, ARC19, ARC35, ARC40, ARP2, ARP3 

C48 7 71% DNA replication factor C complex CTF18, ELG1, RFC1, RFC2, RFC3, RFC4, RFC5 

C53 7 100% transcription factor TFIIH complex CCL1, KIN28, RAD3, SSL1, TFB1, TFB3, TFB4 

C54 7 86% signal recognition particle (sensu Eukaryota) LHP1, SEC65, SRP14, SRP21, SRP54, SRP68, SRP72 

C55 7 100% nucleolar ribonuclease P complex POP1, POP3, POP4, POP5, POP7, POP8, RPP1 

C65 6 100% nuclear origin of replication recognition 
complex 

ORC1, ORC2, ORC3, ORC4, ORC5, ORC6 

C67 6 100% transcription factor TFIIIC complex TFC1, TFC3, TFC4, TFC6, TFC7, TFC8 

C72 6 83% (no significant annotation) DSL1, SEC22, SEC39, TIP20, UFE1, USE1 

C74 6 100% chaperonin-containing T-complex CCT2, CCT3, CCT4, CCT5, CCT6, TCP1 

C78 5 100% (no significant annotation) IPI1, IPI3, RIX1, RSA4, SDA1 

C79 5 100% nuclear cohesin complex CDC5, IRR1, MCD1, SMC1, SMC3 

C85 5 80% GINS complex CTF4, PSF1, PSF2, PSF3, SLD5 

C86 5 100% nuclear condensin complex BRN1, SMC2, SMC4, YCG1, YCS4 

C89 5 80% nucleolar preribosome, small subunit 
precursor 

ENP1, HRR25, LTV1, RIO2, TSR1 

C101 4 100% MIND complex DSN1, MTW1, NNF1, NSL1 

C106 4 100% alpha DNA polymerase:primase complex POL1, POL12, PRI1, PRI2 

C110 4 75% (no significant annotation) CIA1, MET18, NAR1, YHR122W 

C111 4 75% (no significant annotation) NAB3, NAB6, NRD1, SEN1 

C115 4 100% mRNA cleavage factor complex CLP1, PCF11, RNA14, RNA15 

C124 4 75% transcription factor TFIIE complex DBP2, PPN1, TFA1, TFA2 

C92 4 75% outer plaque of spindle pole body SPC72, SPC97, SPC98, TUB4 

C93 4 100% Ndc80 complex NUF2, SPC24, SPC25, TID3 

 
Table 1.  Essential Complexes.  Selected essential complexes from the E-2 complex set.  

Complexes listed are composed of at least 4 subunits, of which >70% are essential.  For 

each complex, the table lists the E-2 complex identifier, the size of the complex, the 

fraction of essential proteins, the most significant GO cellular component annotation for 

the complex, and the list of proteins in the complex.  Twenty-six percent of all essential 

genes in yeast are represented in these complexes. 
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