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Abstract

Background: Encoding arbitrary digital information in DNA has attracted attention as a potential avenue for large
scale and long term data storage. However, in order to enable DNA data storage technologies there needs to be
improvements in data storage fidelity (tolerance to mutation), the facility of writing and reading the data (biases
and systematic error arising from synthesis and sequencing), and overall scalability.

Results: To this end, we have developed and implemented an encoding scheme that is suitable for detecting and
correcting errors that may arise during storage, writing, and reading, such as those arising from nucleotide
substitutions, insertions, and deletions. We propose a scheme for parallelized long term storage of encoded
sequences that relies on overlaps rather than the address blocks found in previously published work. Using
computer simulations, we illustrate the encoding, sequencing, decoding, and recovery of encoded information,
ultimately demonstrating the possibility of a successful round-trip read/write. These demonstrations show that in
theory a precise control over error tolerance is possible. Even after simulated degradation of DNA, recovery of
original data is possible owing to the error correction capabilities built into the encoding strategy. A secondary
advantage of our method is that the statistical characteristics (such as repetitiveness and GC-composition) of
encoded sequences can also be tailored without sacrificing the overall ability to store large amounts of data. Finally,
the combination of the overlap-based partitioning of data with the LZMA compression that is integral to encoding
means that the entire sequence must be present for successful decoding. This feature enables inordinately strong
encryptions. As a potential application, an encrypted pathogen genome could be distributed and carried by cells
without danger of being expressed, and could not even be read out in the absence of the entire DNA consortium.

Conclusions: We have developed a method for DNA encoding, using a significantly different fundamental
approach from existing work, which often performs better than alternatives and allows for a great deal of freedom
and flexibility of application.

Background
Recently, the prospect of encoding information in free nu-
cleic acids has attracted much interest from both academic
research communities [1–4] as well as the technology sec-
tor [5]. DNA offers unique potential for storage of informa-
tion, in that large amounts of information can be be written
(synthesis) and read (sequencing) at moderate, and rapidly
decreasing, cost. Ultimately, one DNA base-pair (bp) stores
2 bits of information [1], a much more dense information
storage medium than any electronic device of comparable

capacity. Moreover, the long term storage of information in
DNA is potentially very feasible, given its extremely long
half-life [6] unlike digital media which is prone to degrading
with timescales on the order of decades. As an example, it
has been possible to reconstruct a mammoth genome from
remains found in the tundra [7], it is unlikely we would re-
cover electronic information stored in the same way. This
feat was possible in part because an exquisite molecular
mechanism (base-pairing and replication) exists for making
many copies with very high fidelity.
Herein we propose a novel scheme for encoding informa-

tion in DNA and distributing this information across mul-
tiple cells, and present computer simulations demonstrating
the feasibility of our approach. We discuss three main steps
of this process (Fig. 1): (i) A coding scheme for converting
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digital information into DNA and vice versa. Our scheme
has a built-in, highly general error detection and correction
capacity that can be tailored to pre-chosen balances of

redundancy versus error tolerance; (ii) A strategy for parcel-
ing long strings of information into smaller pieces that allows
for their later re-assembly. This strategy is completely

Fig. 1 A diagram of the encoding and decoding process. The input data is first wrapped in a tar archive, to ensure a uniform input format as well as
combining multiple files into a single contiguous data stream with a well-established method. The digital information is encoded using a pre-generated
codebook, producing one long single sequence of DNA. This sequence is split into overlapping packets, each up to 200 bp long, which are then
synthesized as a complex pool of oligonucleotides. These can be cloned into plasmids and transformed into cells, where they can be maintained
reliably for a very long time. To recover the information, the population of cells (or alternatively plasmids or lyophilized oligonucleotides) can be
sequenced with NextGen sequencing technology, and de novo assembly of the resulting reads is performed. During assembly, some errors can be
corrected by simply considering the consensus of the contig, whereas systematic errors (such as those arising during synthesis) can be corrected in
silico using the error correcting code. Finally, the codebook is used to decode the resulting contig and recover the digital files
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compatible with current chemical DNA synthesis methods
that yield at most only short (~ 200 bp) oligonucleotides
(oligos); and (iii) The use of error tolerance to defeat
corruption of information arising from synthesis errors, se-
quencing errors, mutations and packet loss. Taken together,
these innovations allow for very long term, error-resistant
storage, potentially for thousands of years.
We also analyze the performance of our method for

key trade-offs that will be inherent in any strategy of en-
coding digital information in DNA.

Results
Successful generation of codebook
We executed our implementation of the codebook gener-
ation algorithm to generate a set of keywords 4 bp long,
and with minimum Levenshtein distance [8] of 3 (the full
set of parameters is given in Table 1: Parameters used for
codebook generation). The latter parameter was set so as
to allow recovery from up to one mutation (including sub-
stitutions, insertions and deletions) per block of encoded
DNA. Due to a codeword length of 4, the block length is
likewise 4 bp, therefore the expected theoretical upper
bound on mutation rate for error recovery is 0.25 bp− 1,
and the upper bound for error detection is 0.5 bp− 1.
All of the resulting code words showed a good diver-

sity of base pair composition, lack of repetition, suffi-
cient sequence distance between themselves, and overall
conformed to expectations. The list of keywords is given
in Table 2 along with the numeric value assigned to each
codeword for the work described here.
The theoretical upper bound on the information that

can be stored using the four nucleotides of DNA is 2 bits
bp− 1. Given our codebook, each sequence of 4 bp can
only have one of 8 values, therefore the information con-
tent under our encoding scheme is only 3 bits per 4 bp,
with a density of 0.75 bits/bp. Thus, the expected
theoretical rate of our encoding approach per se can be
calculated as 0:75

2 ¼ 0:375.

Encoding of digital data into DNA
We implemented our encoding algorithm and used it to
encode five separate sets of input data (Table 3). Table 4
describes the performance of our encoding algorithm on
these test data sets. Each input file was wrapped in a tar
archive prior to encoding, and rates were calculated by
dividing the size of the tar file prior to converting (found
by multiplying the size in bytes by 8) by the information
content of the resulting DNA (found by multiplying the
number of base pairs by 2).

Cat image
The realistic test input Cat.jpg (Fig. 2) was encoded and
had an empirical rate of 0.459, thus the redundancy and
overhead introduced by our encoding algorithm inflated
the size of the data by 1.179 times. Notably, this is a rate
higher than the predicted 0.375; this is due to the Lem-
pel–Ziv–Markov chain algorithm (LZMA) compression
step built into our method reducing the size of the input
(compression with LZMA yields only 10,028 bytes,

Table 1 Parameters used for codebook generation

Parameter Explanation Value

Word length Length of each codeword to be generated,
also determines cipher block size

4

Max mutations Maximum number of mutations that can be
recovered from per block. If this parameter is k,
the algorithm generates codewords such that
the minimum Levenshtein distance between
them is 2 k + 1.

1

Min. GC Minimum GC composition in each codeword 0.4

Max. GC Maximum GC composition in each codeword 0.6

Complexity Minimum complexity (used as a proxy for
repetitiveness) of each codeword

0.75

Table 2 Codebook

Codeword Value

accg 0

ctag 1

gact 2

tcga 3

agtc 4

gtta 5

taac 6

cggt 7

Table 3 Input data

Input data Explanation Rationale

Cat.jpg Color photo in jpeg format,
scaled down to 300 × 200 pixels

Example of real
world data

Flat file A text file containing a string
of 10,340 zeros

Demonstrate
performance when
given extremely
repetitive data

Random
data

10 kb of random data obtained
from /dev/urandom on a
Linux computer

Demonstrate
performance when
given data without
any statistical bias

Centromere Part of centromeric sequence
from human chromosome I,
retrieved from:
https://www.ncbi.nlm.nih.gov/
nuccore/NC_000001.11?report=
fasta&log$=seqview&format=text&
from=11000&to=22000

Real-world example
of repetitive
information

Cat-big.jpg Higher resolution (1125 × 750
pixels) version of Cat.jpg

Example of larger
(100 kB) input file
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which would result in a rate of 0.375). After decoding,
we were able to recover the original image exactly.
The resulting DNA string appeared to be free of any

major self-similarity or repetition. We visualized the
self-similarity using a dot plot to show the extent to
which the sequence matches itself (Fig. 3). The most
notable case of repetition was near the beginning and
ends of the sequence (Fig. 4). Closer inspection of the
binary data after compression but prior to transform-
ation into DNA revealed that there is often a short
string of zeros in LZMA-compressed data, containing
header/tail information used by the compression logic to
identify the properties of a compressed data stream.
Indeed, the most commonly repeated sequence at these
regions was ACCG, which maps to 0 in our codebook.

Random data, centromere and flat file
Random data is often regarded as particularly difficult to
compress, due to a lack of statistical tendencies in it which
can be exploited by compression strategies. Indeed, upon
compressing our 10 kb random file with 7zip, an open
source implementation of the LZMA algorithm, we ob-
tained a compressed file 10.2 kb in size. When encoded into
DNA with our algorithm, the resulting file was only 1.278
times bigger than the input tar file.

The centromere was included as an example of highly re-
petitive information that has statistical properties represen-
tative of known repetitive DNA that is considered
challenging to sequence and synthesize. As seen by the high
rate, the compression step of our encoding process vastly
reduced the size needed to store this data. The resulting
DNA string had very similar composition and structure to
the other test data, and should be no more difficult to
synthesize or read with our approach than any other input.
Lastly, the flat file was dramatically reduced in size

after compression, as shown by the extremely high rate.
Due to the very short output sequence, the repetitive
head/tail regions are clearly visible in the dot plot (Fig. 5),
as the data content of the end result is relatively small.

Base pair composition
We noted that the nucleotide composition was very close
to an even split of 25% for each base in most of our
encoded DNA (Fig. 6). The most conspicuous exception
was the flat file, which showed larger skews due to the
characteristic head and tail patterns, which do not vary in
length with the amount of data encoded, thus having a
disproportionate effect.
We have also investigated the local composition to detect

any small stretches of base composition skew (Fig. 7). As ex-
pected, we did not observe any regions of pronounced skew,
and the distribution of nucleotides seemed to be uniform
throughout the encoded sequences. Notably the skew caused
by characteristic head and tail patterns is most noticeable in
the flat file, where several peaks of C content can be seen at
the beginning and end. This would be the expected result,
since the common code word in these areas is ACCG which
has a larger proportion of Cs. After quantifying the total
skew by adding up local deviations from expected even dis-
tribution, we observed mostly small amounts of error, with
the exception of the flat file which had larger composition
imbalances, particularly in C and T (Fig. 8).
In order to verify that our encoding algorithm per-

forms as expected for larger files, we have also per-
formed a round-trip read-write of a larger image,
Cat-big.jpg (Tables 3 and 4). The algorithm performed
very well for this larger dataset and we were able to re-
cover the original input exactly. The overall error in
composition was even less than smaller datasets (Figs. 6,
7 and 8), due to slightly better performance of the
LZMA compression for larger input data.

Open reading frames within the encoded DNA
Encoded DNA produced by our algorithm is expected to
resemble random sequence in many respects. It is pos-
sible that large stretches of such sequence would coinci-
dentally contain start and stop codons forming open
reading frames. Our scheme anticipates that the
information-bearing DNA would ultimately be stored in

Table 4 Data before and after compression

Data Size of file
(bytes)

Size of tar
archive (bytes)

Length of
encoded
DNA (bp)

Rate

Cat.jpg 10,387 12,288 106,968 0.459

Flat file 10,340 11,776 1792 26.286

Random data 10,240 12,288 112,044 0.439

Centromere 11,001 12,800 35,200 1.454

Cat-big.jpg 105,359 107,008 1,082,584 0.395

Fig. 2 Digital data used for in silico experiments. Left: A 300 × 200
pixel color photo of a cat, encoded with the Jpeg algorithm so as to
produce a files 10,387 byte file
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living cells, thus it is of interest whether and to what ex-
tent open reading frames (ORFs) appear in the encoded
sequence. We analyzed the occurrence of such random
ORFs, and a visualization is presented in Fig. 9.
The distribution of ORF lengths follows a pattern that

would be expected a priori from random sequence. The
shortest ORFs are most frequent (our ORF detection soft-
ware looks for ORFs containing at least one codon besides
start and stop). ORFs longer than about 30 residues or
100 bp are very rare, and none are longer than 83 residues.
The start and stop codons are evenly distributed through-
out the sequence, but slightly under represented near the
ends of the DNA – possibly owing to the composition
skew introduced by the characteristic head and tail regions
resulting from our encoding approach. There does not ap-
pear to be any particular bias towards a single reading
frame, nor towards a particular direction.

Decoding and error correction
We confirmed correct operation of our encoding ap-
proach by attempting to decode the DNA resulting from

the encoding step. In every case we were able to recover
the original tar archive, which when extracted produced
the relevant file that was identical to the one encoded.
Having verified successful round-trip encoding-decoding of

information we then sought to measure the performance of
the error correction function. We simulated substitution mu-
tations accumulating at a slow but steady rate over many
generations, by repeatedly mutating the Cat.jpg so as to cor-
respond to total numbers of mutations per block ranging
from 0 to 2. As an indicator of data integrity, we compared
sequence identity between the simulated mutant sequence
and the original, before and after applying the error correc-
tion (Fig. 10). For a smaller number of mutations, the error
correction is able to restore nearly the entire original se-
quence. As the density of mutations increased, eventually the
error correction did become overwhelmed, but the data
shows a very clear mutation buffering effect contributed by it.
As calculated in earlier sections, our error correcting

code operates on a block-wise basis. Each individual block
(in our case 4 bp long) can be recovered so long as no
more than one mutation occurs within it. With larger

Fig. 3 Overall self-similarity of the encoded Hamming image. Dot plot of the encoded Hamming image generated with dottup, using word size
20 as the parameter. Positions where 20 bp of the sequence are self-similar are marked with blue. Identical regions longer than 100 bp are
marked with red. The plot shows a lack of long stretches of repetition that could interfere with assembly

Akhmetov et al. BMC Biotechnology  (2018) 18:64 Page 5 of 19



numbers of mutations distributed randomly throughout
the sequence, it becomes more probable that at least two
mutations will fall very close to each other and coincide
on the same block. Such an improbable event would po-
tentially result in the loss of that block of information. We
have observed that minor perturbations to the encoded
DNA do not significantly corrupt the stored data, and do
not preclude its recovery. Furthermore, our strategy antic-
ipates that the final encoded DNA string will be broken
up into small, overlapping pieces in practice; therefore the

mutations would be further removed at the assembly stage
via a consensus mechanism.

Parallelized storage
We investigated the practical aspects of synthesis, storage
and reading of digital data as DNA using our approach by
simulating the round trip process. Basing our model on
the assumption of DNA synthesis capability which allows
the production of a pool of oligonucleotides 200 bp each
(readily achievable with current technology), we generated

Fig. 4 Self-similarity at corners. Dotplots of the same encoded DNA, showing only the ends of the sequence, generated with word size 10. Short
blocks of repetitive sequence are visible as blue blocks, these result from header and terminator information utilized by the LZMA algorithm
which is less variable than the compressed data stream itself. Top left: Sequence head vs. itself. Top right and bottom left: Head vs. tail. Bottom
right: Sequence tail vs. itself
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Fig. 5 Self similarity of flat file. Dot plot of the entire encoded flat file, generated with dottup with word size 10, showing self-similarity within the
entire encoded DNA sequence

Fig. 6 Total nucleotide composition of encoded DNA. Bars show the relative fraction of each nucleotide within DNA obtained by encoding the
given digital data
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a series of 200 bp “packets” of information, which tile the
encoded DNA with a pre-defined amount of overlap be-
tween each two successive packets (shown in Fig. 11 for a
175 bp overlap). These packets can be synthesized as a
mixed pool, stored, and sequenced using standard
high-throughput sequencing technology, which would
allow assembly of the full-length DNA sequence using
only the overlaps, without necessitating the complicating
addition of addresses and addressing schemes. In order to
ensure even coverage at the termini, we generated succes-
sively shorter fragments at these areas.

Simulated sequencing and assembly
After generating packets with varying overlaps (75, 100,
125, 150, 175 bp corresponding to mean sampling dens-
ities ranging from 1.6 to 8) we simulated the outcome of
sequencing this pool of oligos using the ART sequencing
simulator (details in Table 5) at varying read depths (1×,
2×, 5×, 10×, 50×). Afterwards we attempted de novo as-
sembly of the resulting FASTQ files, compared the lon-
gest resulting contig to the original sequence, and
considered two key measures of sequence similarity:
How much of the original sequence was present in the

Fig. 7 Local composition. Nucleotide composition in sliding 100 bp window for each sequence of encoded DNA

Fig. 8 Total nucleotide composition error. Total deviation of nucleotide composition from the expected 25% proportion. Shown here is sum of
error within each 100 bp window tiled along the encoded sequence, and divided by the sequence length
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resulting contig (recall), and how much of the resulting
contig matched the original sequence (precision).
Our measures of precision and recall correlated very

closely with each other: With read depths of 5× or more,
assembly could easily succeed even when overlaps be-
tween successive packets are small. Below this threshold,
only comparatively dense tilings of packets could be as-
sembled: With 8× sampling density, even 1× read dens-
ity was sufficient to recover the original sequence.
However, lower sampling densities performed very
poorly with low read depth, and contigs assembled
would be a fraction of the size of the original sequence,
as well as having little similarity to it (indicating spuri-
ous assembly becoming the dominant process). A
visualization of these findings is provided in Fig. 12.
Based on these results, we decided to use a sample
depth of 8× (175 bp overlap) and a read depth of 10×
for subsequent work.
Notably, we simulated sequencing of a complex pool

of short oligos. Simulated reads obtained from this pool

were assembled naively; we did not attempt to recover
individual packets, and then assemble packets. Rather,
due to the overlaps between successive packets, our as-
sembler was able to seamlessly combine these reads into
a single contig without additional intervention. We con-
sider this to be an advantage of our conservative
overlap-based segmentation of data.

Library construction and long-term packet-wise retention
Because the intended use of our strategy involves clon-
ing the pool of synthesized DNA oligos, there is a risk
that not every sequence in the pool will be represented.
If too many packets “drop out”, our assembly method
may suffer catastrophic failure (a full contig will be im-
possible to build if a critical number of adjacent packets
are missing entirely at one or more locations). However,
with higher sampling densities, it is possible that even
though one packet is lost during cloning, the two
packets adjacent to it will bridge the gap and neverthe-
less rescue successful assembly. In order to investigate

Fig. 9 Spurious ORFs in encoded sequence. Top: Histogram showing the distribution of spurious ORFs observed in the DNA sequence for the
encoded Hamming image. Middle: Violin plot showing the length distribution of spurious ORFs grouped by reading frame. Frames are marked
with a minus (−) if they are on the negative strand (ie. detected in the reverse complement of the sequence). Bottom: Distribution of spurious
ORF start (grey) and stop (black) positions along the sequence
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the validity of this tradeoff in the practical context of
our work, we performed Monte Carlo simulations of
library coverage under the assumption of a defined num-
ber of clones being harvested (set to a constant multiple
of the sequence diversity).

In all, we conducted 20 simulations each from pools of
100 and 500 unique sequences and expected mean library
sample rates ranging from 1 to 30 clones harvested per
unique oligo sequence. We then looked at what fraction
of the initial set was represented in the draw (Fig. 13). As

Fig. 10 Mutation buffering by error correcting code. Light gray line shows the effect of applying error correction on sequences mutated to
varying degrees. The mutation rate is shown in average mutations per block, given that each block is 4 bp long. Shown here is the mean of 10
simulations (middle line) with ±2.58σ band (shaded area), representing 99% confidence interval. Bottom plot: Subset of the data corresponding to
only lower mutation rates

Fig. 11 Distribution of oligos along the encoded DNA. Black bars indicate 200 bp oligos, produced so as to tile the encoded sequence with
175 bp overlaps between two successive oligos. Blue graph shows coverage of the DNA by oligos (uniformly 8× virtually everywhere). Only the
beginning and end of the sequence is shown here; but the parts shown here are representative of the entire sequence
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expected, if the total number of clones harvested is equal
to the number unique sequences, some sequences appear
repeatedly and many are not captured at all. In our case,
about a third of the pool would be lost under this cloning
regimen. Collecting a very large number of clones virtually
guaranteed that no sequence would be lost. Interestingly,
the threshold of full coverage was between 10 and 5 clones
per unique oligo (cpo): The vast majority of the sequences
could be recovered with 5 cpo, but in most simulated runs
there would be a few packets missing. On the other hand,
if 10 clones per oligo are considered then every single
packet was recovered in all 20 simulation runs.
Interestingly, the complexity of the pool per se does

not appear to have an effect on these boundary condi-
tions. The most pronounced difference between the 100
oligo and 500 oligo case was that the variation was
greater with a less complex pool, while the more com-
plex pool behaved more predictably in individual runs.
We concluded, based on our observations, that harvest-

ing 10 clones per oligo is sufficient to have a > 95% confi-
dence that all original packets will be well represented.

Simulated recovery of information with packet loss
Having observed that harvesting roughly 10 clones for
each unique oligo should almost guarantee full library
coverage, we attempted to test this inference with in
silico experiments. We conducted a series of simulated
experiments in which the initial pool of oligos was ran-
domly sampled with replacement (since the number of
molecules in each class is typically much higher than the
number of distinct sequences in synthesized oligo pools,
we regarded the effect of replacement as negligible).
These random subsamples were then subjected to simu-
lated sequencing with ART at 10× read depth, and then
de novo contig assembly of the resulting reads was
attempted to determine whether recovery of the original
sequence is possible even with lost packets. This was re-
peated 20 times to account for the influence of chance
events on recovery.
As shown in Fig. 14, results were in line with the ex-

pectations arising from the library-coverage experiments.
We saw that with a single clone harvested per oligo, in
all 20 cases the resulting contigs do not match the ori-
ginal sequence. Moreover, we have seen that due to very
poor coverage of the original pool, under this regimen
the assembly suffers catastrophic collapse: The resulting
contigs do not exceed roughly a third of the original se-
quence by length, and their sequence often diverges
from the reference. Predictably, applying the error cor-
rection did not ameliorate this situation.
With the previously established “safe” regimen of 10

clones per oligo, the vast majority of the 20 experiments
yielded contigs that were exactly identical to the original se-
quence, demonstrating successful round-trip read-write of

Table 5 ART simulator parameters

Parameter Value Explanation

Sequencer HiSeq 2500 Sequencing equipment to be simulated;
we chose a commonly used Illumina
sequencer

Read length 150 Length of simulated reads

Read depth 1, 2, 5, 10, 50 How many reads to collect for a given
position. Higher numbers represent
deeper sequencing (with more reads
covering the same sequence).

Fig. 12 Likelihood of successful assembly at varying read and sampling depths. Left: Fraction of base pairs in the longest assembled contig that
matched the original sequence after mapping. Right: Fraction of the original sequence that was present in the longest assembled contig
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digital data as DNA. In two cases, the assembled contig did
not match the original exactly, but the only difference in ei-
ther case was a single missing terminal nucleotide. Because
our error correction method is based on Levenshtein dis-
tances, which take into account not only substitution but
also deletions, it was possible to correct these problems and
restore the original sequence exactly. Thus, considering
error correction as well, with a regimen of 10 clones per

oligo we could reconstruct the original sequence exactly in
every single one of our 20 experiments.
Lastly, of interest was the borderline case of 3 clones

per oligo. As expected, this regimen was occasionally
able to produce exactly matching sequence, but often
the contigs would differ slightly due to missing one ter-
minal nucleotide. Many such errors were readily amend-
able with the error correction, such that attempting to

Fig. 13 Monte Carlo simulations of library construction from pools of oligos. A series of simulated random draw experiments were performed for
pools of 100 and 500 unique sequences; the number of draws ranged from 1 to 30 times the number of unique sequences. For each
combination of parameters, 20 repeat experiments were performed, shown here as lines of identical color

Fig. 14 Recovery of original sequence after simulated sampling of packet pool and simulated sequencing. Each bar shows fraction of 20
simulated read-write experiments in which the data after decoding matched the encoded data exactly. For black bars, the error correction
capacity built into the sequence was ignored, and the assembled contig was decoded as-is. For grey bars, the error correction was applied and
decoding was attempted after
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correct errors produced a dramatic improvement in how
many assembled contigs matched the original sequence
exactly.

Discussion
DNA has great potential as a medium of information stor-
age. Indeed, it has been used for this purpose by all living
organisms for millions of years. Molecules of DNA are
much smaller than digital devices, can be easily copied
using both natural and artificial systems and they can be
stably maintained for a very long time: The half-life of
DNA in solution, depending on pH, temperature, and
length, can range from a few years to hundreds of thou-
sands of years [9]. In nature, DNA in fossilized bone has
been shown to have a half-life as long as 500 years, imply-
ing recovery should be possible after many thousands of
years given sufficient initial copies of the DNA [6], and
useful sequence has been recovered from 450 to 800 kyr
old samples encased in ice [10]. In contrast, digital media
degrades quickly over decades [11–14].
Besides durability of the medium itself, DNA enjoys a

unique advantage in that the characteristics of DNA are
fixed over time. In contrast, electronic formats change
frequently and require specific read/write equipment,
technology that can become lost on more epochal time
scales [11, 15]. This molecular conservatism will help
drive recovery irrespective of what version of DNA se-
quencing technology is available even in the far future.
Taken together, these features highlight the possibilities
for DNA for extraordinarily long term archiving.
DNA-based information storage has previously been

explored (Table 6), as challenges with conventional
digital storage methods became apparent. Bancroft et al.
2001 provided an early proof of concept and laid out the
theoretical framework for encoding data into DNA. They
proposed an encoding scheme that maps triplet

combinations of the three nucleotides A, C, T to ternary
numbers and uppercase letters of the English alphabet,
along with a space character. The information is subdi-
vided into segments (called iDNAs), and each segment is
prefixed with a spacer and unique primer sequence, and
then flanked with universal forward and reverse primers.
An ordered array of unique primers is also included as a
“polyprimer key”, also flanked by the universal primer.
With this, they encode the famous opening of A Tale of
Two Cities by Charles Dickens in two iDNAs 232 and
247 bp long. The iDNAs can then be individually recov-
ered by PCR and sequenced. Notably, this conception
predates the revolution in reading DNA sequences
wrought by NextGen sequencing technology, which we
extensively leverage in our own work.
Church and colleagues reported in 2012 the storage and

subsequent recovery of a 5.27 megabit stream of informa-
tion (composed of text, images and source code) [3]. The
information was encoded with a degenerate code, map-
ping A or C to 0 and G or T to 1 (this provided some free-
dom in preventing homopolymer runs and GC-skew).
The information is partitioned into 54,898 blocks 159 bp
each (which would amount to 8.7 Mbp of DNA), of which
only 96 bp encodes information while 19 nt is used for ad-
dress blocks and 44 bp for universal primers (incidentally
this implies a rate of about 0.3 input bits per output bit,
very close to that which we calculate for our encoding
strategy). After sequencing and filtering for perfect reads,
they obtain 3000-fold coverage of each piece (for compari-
son, our simulations demonstrate data recovery with
5-fold and 10-fold sequencing). However, their demon-
stration still contained 22 nucleotide errors, of which 10
were also bit errors. Interestingly, this work notes that fu-
ture work could incorporate compression, redundant
encodings, parity checks and error correction - three of
which are central aspects of our own work.

Table 6 Comparison of key publications

Study Code Partition Data encoded Shannon
information (bits)

Total
bases

Rate Error
tolerance

Bancroft
2001

Triplets of A, C, T to uppercase
letters

Address based, with indexes
also concatenated on a
dedicated key molecule

107 character
English phrase

509 479 0.531 –

Church
2012

2 bases mapped to each
binary digit

Address based Text, images and
source code

5,270,000 8,728,782 0.302 12 of 22
corrected

Goldman
2013

Huffman encoded, bases
mapped to ternary digits
and rotated

Purely address based assembly,
fourfold redundancy due to
overlaps between pieces

Text, PDF, audio,
images

5,165,800 17,940,195 0.144 Recovered
from 0.4%

Grass
2015

Based on Reed-Solomon
code

Address based Text 664,000 788,578 0.421 Recovered
from 1%

Yazdi
2015

Word 6-tuple mapped to
binary numbers and
DNA sequences

Address based Text 23,196 32,000 0.362 –

This
study

Block cipher based on
Levenshtein distances

Purely overlap based Text, images, video,
random data

83,824 111,192 0.377 Recovered
from 1%
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Goldman and colleagues in 2013 describe the encod-
ing and reconstruction of various computer files totaling
739 kb [4]. The digital information was first Huffman
coded (which reduces the space taken up by frequently
occurring symbols) and then converted to a ternary rep-
resentation, which is encoded into DNA at one nucleo-
tide per ternary digit, rotating the nucleotides to prevent
sequences that are difficult to synthesize or sequence
from occurring. This single stream of DNA is broken
into 100 bp fragments with 75 bp overlaps similar to our
approach, but with alternate forward and reverse com-
plement information in subsequent pieces. The overlaps
are used only for redundancy, not assembly, and instead
an address block is added to each piece to enable assem-
bly. Their final encoding produces 153,335 DNA se-
quences that are each 117 bp long (totaling 17 Mbp),
including the address information, which corresponds to
a rate of roughly 0.17 (including the four-fold overlaps).
After sequencing and filtering, they obtained a set of
reads with 1308× coverage, from which they were able
to recover the encoded digital data after applying error
correction. For comparison, in our case we simulated
read depths of 5× and 10×, after which all of the data
was recovered perfectly without need for error correc-
tion, with the exception of a few cases in which a single
terminal nucleotide was lost. These losses could none-
theless be rectified by applying error correction so that
the original data was recovered intact.
A 2015 publication by Grass and colleagues demonstrates

encoding of 83 kB of data in DNA, using an error correction
approach based on Reed-Solomon codes [16]. In this imple-
mentation, bytes of input information and block indices are
mapped to elements of a Galois Field with an addition of
Reed-Solomon redundancy for error correction. The Galois
numbers are in turn mapped to 3 bp “codons” of DNA.
Some codons are excluded from this mapping, which en-
sures that homodimers in output sequence cannot be longer
than 3 bp. The output sequence is synthesized as 117 bp
long pieces of DNA and stored encapsulated in gel. From
83 kb of text, they produced via this method 4991 pieces of
DNA, for a total of 584 kbp of encoded DNA. Thus their en-
coding rate was roughly 0.59. Interestingly, Grass et al. per-
formed experiments simulating thermal damage to the DNA
in order to assess their error correction ability, and were able
to recover original information exactly from a simulated 1%
rate of per-nucleotide error; in our own simulations we also
observed a threshold of about 1% for successful recovery.
However, our simulations of error recovery did not account
for error correction by the overlapping packets, and consider
only errors that are not eliminated during the sequencing
and assembly stages, so in reality our simulations underesti-
mate the error-correction capacity of our work (a more de-
tailed discussion of estimated error rates is included in the
Additional file 1).

Another recent report by Yazdi et al. [17] has made
several advances to address-based encoding schemes by
demonstrating a rewritable storage system which also
supports random access. They distributed a total of 17
kB of digital information across 32 1 kbp gBlocks pro-
duced by a DNA synthesis technology. Using larger frag-
ments allows for more efficient storage and reduces
likelihood of data loss due to missing packets, both with
address-based strategies as well as in our case. However,
synthesizing of large amounts of DNA in bulk can be
more economical with array based synthesis. The au-
thors note that the cost of DNA synthesis is rapidly de-
creasing as new technologies are developed; should
gBlocks or another method for synthesizing longer DNA
pieces become cost effective in the future, our encoding
scheme would be directly compatible with it. In fact,
gBlock sequences are subject to a number of constraints,
including lack of high GC areas, repetitive stretches and
toxic sequence. Our strategy directly mitigates all of
these issues as is, and is therefore fully compatible with
gBlocks. Yazdi and colleagues also demonstrate random
access and editing, by using specialized address se-
quences and PCR. Random access and ability to rewrite
is a strength of address-based approaches – though lim-
ited random access could be added to our scheme (by
flanking each packet with unique primer binding se-
quences, for instance) rewriting in place is likely to be
impractical. Thus, we consider address-free approaches
such as ours to be more suited for very long term, infre-
quently accessed, “cold storage” for archival purposes,
where the latency and cost of editing is less significant.
Address-based systems, especially with rewrite capability
such as that shown by Yazdi et al., would be well suited
to a more frequently accessed storage tier above that
utilizing ours.
Our strategy represents several important innovations

over previous work. Most importantly, we do not rely on
address blocks to guide assembly of the DNA sequence
for decoding, but instead make use of the overlaps be-
tween packets of data. These overlaps can be used to
construct a De Bruijn graph and be assembled in a man-
ner analogous to the well-studied problem of genome
sequencing and assembly. A primary advantage of this
method is that only standard assembly algorithms, not
specialized software, are required to perform the assem-
bly. In addition, the different parts of the packet are
equally vulnerable to mutation. With an address scheme,
mutations falling on the address section can lead to the
loss of the whole block, while mutations falling on the
data portion are far more limited in scope. In our ap-
proach, if the packets tile the original sequence uni-
formly, it does not matter where the mutations fall,
provided they are sufficiently sparse. This greatly simpli-
fies the design of a single universal error correction
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scheme. Finally, the overlaps act as additional mutation
buffers. Our encoding has tunable redundancy that
already confers an error-correction capacity, but the
added redundancy from overlaps allows straightforward
detection and correction of sequencing errors and rare
mutations as a result of the de novo assembly process.
This ‘failsafe’ error correction protocol makes this strat-
egy the most secure thus far for any long term storage
attempts.
With address blocks, an important consideration is effi-

ciency of storage: within each packet, the address informa-
tion and the encoded data compete for space. The
number of packets scales with the total size of the
encoded digital data, and the associated address block be-
comes larger when there are ever more packets. An upper
bound on the number of packets is the number of possible
unique sequences of that length (in reality this tends to be
a gross underestimation since many possible sequences
are unsuitable for synthesis and sequencing). Early on it
was recognized by Goldman and colleagues, for instance,
that with 114 bp packets, 14 bp could be used for indexing
to obtain 88% efficiency; this imposes an upper limit of
about 268 million packets covering 6.7 Gbp of sequence
(taking into account the four-fold redundancy). For a simi-
lar level of redundancy, our approach could generate
114 bp packets tiling the sequence with 85 bp overlaps,
for a total of 231 million packets. The upper limit on how
much information can be stored would most likely be de-
termined by the limits of assembly software. Moreover, ar-
bitrarily large amounts of information can be stored
regardless of this upper limit, if separate pools of encoded
DNA are physically isolated by storing them in their own
individual containers. Alternatively, multiplexing is pos-
sible by flanking packets pertaining to each encoded file
with a unique pair of primer sequences, and then select-
ively amplifying that subpool as needed (this also allows
for random access [17]).
Our overlap-based approach therefore allows for a

simpler and more straightforward partitioning of
encoded data than relying on address blocks. It elimi-
nates the need for parsing and interpreting address
blocks when decoding, as well as the concern over how
to preserve the instructions for performing this step cor-
rectly. The sizes of address blocks must be explicitly
standardized prior to encoding, which will impose an
upper limit on how much data can be encoded for as
long as that standard is in effect. If the address blocks
are too small, large encodings will run out of address
space and the encoding standard will have to be changed
often (leading to compatibility issues), but if they are too
big then small pieces of data will be encoded ineffi-
ciently. Our approach sidesteps this dilemma; it is only
necessary that sufficient overlap exists between packets
to enable assembly, and no space is “wasted” on address

blocks since the overlaps act as an additional safeguard
of data integrity. The information is partitioned effi-
ciently regardless of its size, the upper bound on cap-
acity is very large, and no specific details of the
partitioning need be recorded, since simply attempting
to assemble the overlapping pieces of DNA (a step
which would be obvious even if the encoding scheme is
unknown) yields the complete stream of encoded data.

Conclusions
We have described the design and in silico implementa-
tion of a strategy for encoding digital information into
distributed DNA sequences and then reassembling the
original information irrespective of intervening errors.
We evaluated several key parameters, including the
manner in which the sequence would be partitioned into
oligonucleotides, the cloning regimen necessary to main-
tain a sufficient fraction of the original information for
reconstruction following dispersal, the read depth
needed to ensure successful recovery, and limits on how
many mutations can be tolerated while still allowing
complete recovery of the information. Our simulations
demonstrate a successful round-trip of information dur-
ing long term storage in DNA, taking into account prob-
lems that might be encountered during synthesis (the
write phase) and sequencing (the read phase).
The error correction method we have chosen, and the

closely related algorithm for codebook generation, facili-
tate tailoring the encoding to specific applications. By re-
ducing the minimum distance between code words, one
can reduce redundancy, thereby allowing the encoded
data to fit into shorter DNA. Conversely, when the in-
tegrity of the data is more important than the efficiency
of storage, the minimum distance can be set very high,
thereby potentially allowing recovery even if a large
number of mutations are introduced.
By compressing our input data with LZMA, we re-

move correlations between the statistical properties of
the input data and those of the resulting DNA sequence.
LZMA is a compression algorithm based on construct-
ing a Markov model of the data that captures recurring
patterns within it, and then encoding the overall data in
terms of this Markov model. To the extent that patterns
do exist, the resulting information is compressed and
largely free of patterns, resembling random data or uni-
form digital noise. Thus, LZMA should allow us to pro-
duce uniform and non-repetitive DNA sequence from
even very skewed and / or repetitive inputs. By explicitly
generating a codebook with well-defined parameters, we
should be able to further impose constraints on any
resulting sequence output, such as requiring a GC com-
position that would be optimal for synthesis and sequen-
cing, irrespective of the composition or structure of the
input data.
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In our work we used a codebook of eight 4 bp blocks.
In principle, it is possible to obtain the same level of
overall redundancy with longer blocks, the minimum
codeword distance being scaled up as appropriate. Two
key parameters for choosing the block size were per-
formance (codewords for longer blocks take more time
to generate) and the expected distribution of mutations.
Longer codewords, with more distance between them,
have a greater per block mutation tolerance, even if the
per base pair mutation tolerance remains the same.
Error correction functions only if the number of muta-
tions within a particular block remains below a thresh-
old; that is, mutations must not be too close to each
other. If there is a tendency for mutations to occur in
small clusters, rather than being evenly distributed, lon-
ger blocks would likely be preferable.
Though our primary interest was to develop the means

of storing information in DNA, the process can be
adapted to a number of other applications. Herein we
will discuss three of these: repurposing the codebook
generator to produce barcodes, using encoding for in-
activation of toxic sequences and the potential to use
DNA-encoding to protect private information.
We designed our codebook generation algorithm to

produce a set of sequences that are evenly spaced in se-
quence space. This encoding has similarities to the
mathematical concept of a ‘perfect code’ [18] which re-
fers to sets of codewords optimally arranged in sequence
space so as to provide a given level of error correction,
although our approach considers Levenshtein distances
rather than Hamming distances, and furthermore there
are codewords we deliberately avoid, so in practice our
code is less than perfect. Though our purpose was to en-
code information, an interesting property of the result-
ing codewords is to lack bias and repetition, and
therefore be distinct from one another. The relatively
small length makes them easy to synthesize and the lack
of repetition makes them easy to sequence. Overall,
these properties also potentially make them excellent
DNA barcodes [19–21], and as such they can be readily
applied to a long list of biological techniques such as
multiplexed NextGen sequencing [22], identification of
genetic variants [23], construction of deletion libraries
[24] and high-throughput RNA profiling [25].
Another consequence of encoding is that output se-

quence has very little resemblance to input. This can
make the storage of difficult sequences more tractable.
For example, if a given DNA sequence is fragile or un-
usually prone to mutation, encoding should allow it to
be stored with high fidelity. Our centromere simulations
illustrate this principle - although centromeric sequence
is not per se toxic, it is very repetitive, impairing its
faithful construction and sequencing. In contrast, when
encoded, the centromere data does not have any obvious

repeats or other unwieldy sequences. Encoding can be
used to not only preserve information, but also to pre-
vent its ready expression in the absence of decryption.
Any biological sequence is rendered biologically unread-
able by our scheme for encoding, and this in turn sug-
gests that biothreats such as toxin genes or even entire
pathogen genomes (e.g. genomes of infectious viruses)
that would otherwise be harmful in their ‘biologically
readable’ form could potentially be encoded and stored
over long periods, essentially placing them in ‘deep stor-
age’ for posterity.
Distinctly from previous work, we encode information

such that there is a specific codebook associated with
each piece of information, which is also necessary for
later decoding. In this sense, our encoding method is
analogous to a symmetric key cryptography scheme,
with the codebook as the key. With short block lengths,
it is conceivable that the codebook might be reverse
engineered from the encoded sequence only by an ex-
haustive approach. With longer block lengths, it would
become extremely difficult to recover the information
without access to the codebook. This allows information
to be hidden from readers who do not possess the cor-
rect codebook, or simply to prevent information from
being accessed before an arbitrary amount of time has
passed (that is, the time needed for exhaustive recon-
struction of the codebook). These features render DNA
encoding inaccessible and resilient in a way that far ex-
ceeds what can be availed via electronic encoding. While
there may be few applications for information privacy
that can tolerate slower read-write capabilities, it should
be noted that mechanical, Enigma-like rotor cypher sys-
tems can be difficult and time-consuming to crack even
with modern electronic computers [26]. Thus, it is en-
tirely possible that a nation state or corporate enterprise
might wish to hide (and retrieve on a leisurely scale)
‘trade secrets’ via the long term, difficult to break, and
undegradable encoding strategies we describe herein.
Finally, because of the Markov chain-based compression

employed, having access to part of the encoded DNA does
not allow one to access part of the original information. De-
coding is only practical if the entire sequence is present,
since otherwise both assembly and decompression fail. This
all-or-nothing nature of the information round trip requires
care to be taken that a sufficient number of packets are
retained throughout storage; in our case we solve this by cre-
ating a redundant set of packets that allow assembly even if
a small number is lost. Subsets of the packets could also be
distributed to different recipients or locales, which would
then be unable to decode the information on their own with-
out combining their respective pieces of the DNA-encoded
data. This strong message compartmentalization, combined
with the potential for multi-hundred thousand year digital
file storage capacities--a time-scale exceeding all known
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continuous human civilizations--allows one to consider the
prospect of securely preserving information such that it out-
lasts even extreme, global catastrophic events.
To summarize, we have demonstrated a strategy for

encoding digital information into DNA, which is highly
parallelizable and has built-in error correction ability,
and relies on an overlap-based assembly method funda-
mentally different from the previously published ap-
proaches. We have demonstrated full round trip read
and write of the information, including simulated se-
quencing of a cloned oligo pool, with recovery from sim-
ulated mutations.

Methods
Test data
The Cat.jpg file was obtained by scaling down a color
photo of a cat (released into the public domain) and en-
coding with the Jpeg algorithm. After adjusting the pixel
size of the image to approximate our desired size, we
then fine-tuned the Jpeg compression level (ultimately
we used level 86) so that the resulting file size was about
10 kB. Cat-big.jpg was constructed similarly to produce
a 100 kB image. The random data file was obtained by
creating a 10 kB file and populating it with random data
piped from /dev/urandom on a Unix computer. The
centromere input was a text file containing part of the
sequence from human chromosome I (NCBI sequence
NC_000001.11 positions 11,000–22,000). The flat file
was constructed by pasting a large number of 0 s into a
text file. In every case, the test data was wrapped in a tar
archive (which is a file format that can store one or
more files without compression), which is then used as
the input for the DNA codec.

Codebook generation
The codebook is a table showing permissible blocks of
DNA sequence, and what numeric value each sequence
maps to. Our algorithm (implemented as Python code in
the file make_codewords.py) begins by generating all
possible sequences of a given length (Table 1). This pool
is filtered to remove sequences with high repetitiveness
(quantified by dividing the number of its unique subse-
quences to the number of all of its subsequences, imple-
mented in complexity_estimation.py) and undesirable
GC content (in our case set as less than 40% or more
than 60% GC). Of the remaining sequences, one is
picked at random and saved as a codeword. All se-
quences with Levenshtein distance less than the defined
threshold (in our case 3) are removed. Of the remaining
sequences, another one is picked at random to be the
second codeword, those with too small Levenshtein dis-
tance are pruned again, and the process is repeated until
no further codewords can be produced. Sequential inte-
ger values starting from 0 are then assigned at random

to each codeword in the resulting codebook. We gener-
ated a single codebook of eight 4 bp codewords and
used it for all of our experiments (Table 2).

DNA codec implementation
The DNA encoding-decoding scheme was implemented in
Python (dna_read.py and dna_write.py) to produce a codec
which, given the codebook, converts a digital file into a DNA
sequence (encoding) and vice versa (decoding). For encod-
ing, the file is first read, compressed with LZMA (lzma li-
brary of Python 3.5.2), converted into a byte array, which is
equivalent to the digits of a base 256 number. A base change
operation is performed, to change the base from 256 (the
number of possible values a byte may have) to 8 (the number
of codewords in our codebook). The resulting array of inte-
gers is converted into short DNA blocks according to the
mapping in the codebook, and concatenated into a single
DNA sequence. To decode, the entire DNA sequence is
broken into 4 bp blocks, then each block is mapped back to
an integer according to the codebook, producing a base 8
number. A base change is performed from 8 to 256, and the
resulting array of numbers is converted into a byte stream
and decompressed with LZMA.

Error correction
The error correction is applied by scanning through a
DNA sequence and checking each subsequent block
against the codebook. If the block appears in the code-
book, then it is deemed correct. Otherwise, the block is
deemed to be mutated, and the Levenshtein distance
from the observed block to each code word is calculated.
The block with the minimum distance is assumed to be
the original sequence before mutation. This was imple-
mented in clean_dna.py and related files.

Partition of encoded DNA into packets
In order to accommodate eventual synthesis of the
encoded DNA sequence into nucleic acid, it is broken up
into short subsequences termed “packets” (implemented
in split_into_packets.py). The packets are selected so that
each one is 200 bp long (selected because it is the longest
length feasible with current large-scale DNA synthesis
technology), and they tile original sequence such that each
two adjacent packets overlap by a specified amount. For
the beginning and end of the sequence, shorter packets
are produced to avoid lower coverage of sequence ends.

Sequencing simulations
We simulated NextGen sequencing of our encoded DNA
and packets using the ART sequencing simulator [27]. We
simulated 150 bp-long reads with the Illumina HiSeq 2500,
this being a common, commercially available method of se-
quencing. The read depth varied from 1× to 50× depending
on the particular experiment.
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De novo assembly
Fastq files generated by the ART simulator were used for
de novo contig assembly with the Geneious assembler
from the Geneious 9.1.2 software [28]. The parameters
specified that the expected assembly was linear and not
circular. The longest resulting contig was then taken as
the assembled sequence.

Mutation simulation
To simulate mutations, we implemented a simple iterative
algorithm (mutate_dna.py). In each iteration, the algorithm
picks a random base pair and changes it to a different,
randomly picked base. This operation is repeated as many
times as needed.

Additional file

Additional file 1: Supplementary information. (DOCX 34 kb)
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