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ABSTRACT

Motivation: We reformulate the problem of comparing mass-spectra

by mapping spectra to a vector space model. Our search method

leverages a metric space indexing algorithm to produce an initial

candidate set, which can be followed by any fine ranking scheme.

Results: We consider three distance measures integrated into a

multi-vantage point index structure. Of these, a semi-metric fuzzy-

cosine distance using peptide precursor mass constraints performs

the best. The index acts as a coarse, lossless filter with respect to

the SEQUESTand ProFound scoring schemes, reducing the number

of distance computations and returned candidates for fine filtering to

about 0.5% and 0.02% of the database respectively. The fuzzy cosine

distance term improves specificity over a peptide precursor mass filter,

reducing the number of returned candidates by an order of magnitude.

Run time measurements suggest proportional speedups in overall

search times. Using an implementation of ProFound’s Bayesian

score as an example of a fine filter on a test set of Escherichia coli

protein fragmentation spectra, the top results of our sample system

are consistent with that of SEQUEST.

Contact: smriti@cs.utexas.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

High-throughput methods for the identification of peptide fragmen-

tation spectra (tandem or MS/MS spectra) are becoming increas-

ingly important owing to fast growing protein databases and the rate

of data acquisition using modern instrumentation. Most tools today

employ computationally expensive linear scans of large databases

of theoretical spectra. For example, typical analyses of an LC/LC/

MS/MS experimental data set using the popular BioWorks program

(ThermoFinnigan) on a single processor takes on the order of half

a day of computation time (30 000 scans against the Escherichia coli
database). Furthermore, the search hits are only meaningful when

ranked by a relatively computationally intensive probabilistic or

statistical significance/relevance score (Yates III et al., 1995;

Mann and Wilm, 1994; Perkins et al., 1999).
A determining factor of the computational expense of the search

is the similarity measure used. A simple similarity measure is the

shared peaks count (SPC), a count of common m/z values between

two spectra. SPC does not account for small peak shifts intrinsic to

mass spectra owing to measurement and calibration error of the

mass spectrometer, nor does it account for larger peak shifts caused

by post-translational peptide modifications and mutations (Pevzner

et al., 2001). A common solution is to add modified copies of each

spectrum to the database (Yates III et al., 1995) known as the virtual
database approach (Pevzner et al., 2001) However, given the 200+
known protein modifications (Gooley and Packer, 1997), this

method soon results in exponential blowup of database size

owing to combinatorial explosion. The virtual database approach

clearly does not scale and linear scans become even more unac-

ceptable. As an alternative, Pevzner et al. (2001) proposed an

O(n2k) dynamic programming distance measure that can match

two n-dimensional spectra that are up to k peak modifications

apart. In the context of current approaches that use linear scans

of large databases (size D), this measure must be evaluated for

every entry in the database [total time complexity of O(n2kD)].
We present a ‘coarse filtering-fine ranking’ scheme for protein

identification. A coarse filter is a fast computation that produces a

solution set (candidate set) with many false positives without elim-

inating any true positives. The computation is often a lower bound

on more accurate matching functions, and hence less computation-

ally intensive. Our search methodology consists of a coarse filtering

stage that improves on the shared peaks count, followed by a fine

filtering stage in which the candidate spectra output by the coarse

filter are ranked by some significance score. As an example of a fine

filter we implemented a version of ProFound’s (Zhang and Chait,

2000) Bayesian scoring scheme. Coarse filters reduce the search

time per query and in high-throughput proteomics, total expected

speedup is the speedup per query multiplied by the number of

queries.

Scalable coarse filtering may also improve overall search accu-

racy by facilitating the use of more discriminative, computationally

expensive measures on the reduced candidate set, with little increase

in search time. For example, approaches that combine the virtual

database approach with complex distance functions similar to

Pevzner et al. (2001) may start to become feasible.

Coarse filtering algorithms have been applied successfully to

genomic (Williams, 1998) and speech signal database indexing

(Keogh, 2002). Coarse filtering algorithms for genome databases

have traditionally drawn inspiration from text (Faloutsos and Oard,

1996) and image retrieval (Smith and Chang, 1996). Our filter,

based on metric space indexing, leverages the vector space model�To whom correspondence should be addressed.
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from information retrieval. Documents are commonly represented

as sparse high dimensional vectors, where the i-th entry represents a
measure of occurrence-frequency of the i-th word. Matching similar

images is also often accomplished by comparing high dimensional

histograms of image color (frequency spectra). We represent mass

spectra as high dimensional vectors of mass/charge (m/z) values,
creating a search space similar to ones used for documents.

We consider three distance measures for comparison of mass

spectra. The first is derived from the cosine similarity measure,

and is adapted to account for peak shifts in experimental spectra.

The second is similar to the first but includes peptide precursor mass

constraints. This method achieves maximum reduction in search

time. We also investigated Hamming distance on reduced dimen-

sion boolean spectra vectors. We present an empirical evaluation of

the different distance functions, based on search time and accuracy

of results. In all cases, the candidate set for fine filtering was

substantially reduced.

Metric space indexing in high dimensional spaces is difficult

because nearest neighbor and range query (Chavez et al., 2001)
algorithms have an exponential dependency on the dimension of the

space (Chazelle, 1994). In our case, a semi-metric distance function

is most effective at reducing search time by effectively reducing

the intrinsic dimensionality of the space. We find that semi-metric

searches on a multiple vantage point (MVP) index tree may be

approximate, but achieve better search efficiency (pruning).

Section 2 gives a brief overview of related work in protein iden-

tification by mass spectrometry. Section 3 introduces metric space

indexing and Section 4 details our distance functions for spectra

comparison. Section 4.5 introduces semi-metric searches on MVP

trees, Section 5 contains empirical results and Sections 6 and 7

contain a detailed discussion of the results and conclusions.

2 RELATED WORK

In bottom-up proteomics, a mass spectrum is a histogram of

constituent m/z ratios of a set of peptides generated from either

the enzymatic digestion of a protein (yielding the peptide mass

fingerprint or PMF spectrum), or the induced fragmentation of a

single peptide (yielding the peptide fragmentation fingerprint or

PFF spectrum). When compared against a database of theoretical

spectra, a sufficient number of accurately measured m/z peaks can
identify a protein within acceptable statistical significance scores

(Zhang and Chait, 2000). In tandem MS, fewer, but more precise,

fragmentation spectra can uniquely identify the protein. However,

automated searches must account for calibration errors, post-

translational peptide modifications and mutations which introduce

peak shifts into the experimental spectra.

Several approaches to in silico protein identification using MS

have been described in the literature. While SPC is an intuitive

measure of similarity, its accuracy diminishes drastically in the

presence of peak shifts owing to mutations and/or modifications

(Pevzner et al., 2001). MASCOT (Perkins et al., 1999), MS-FIT

(Clauser et al., 1999) and ProFound (Zhang and Chait, 2000) use

statistical or probabilistic scoring schemes that improve on the

shared peaks count. MASCOT and MS-FIT are based on MOWSE,

(Pappin et al., 1993) a scoring scheme that uses the normalized

distribution frequency of peptides in the sequence database.

MASCOT reports statistical significance levels and expect values

for the MOWSE score. ProFound uses a Bayesian scoring scheme.

In a recent survey of the three systems, ProFound gave the largest

number of correct identifications (Chamrad et al., 2004). Popular
tools for MS/MS identification include TurboSEQUEST (Yates III

et al., 1995) andMASCOT (Perkins et al., 1999). Band optimization

(Sankoff and Kruskal, 1983) has been used for matching gene

sequences (Chao et al., 1992) and in speech recognition using

dynamic time warping (Sakoe and Chiba, 1978). Applying this

technique on Pevzner et al.’s dynamic programming measure

(Pevzner et al., 2001) could reduce time complexity. We believe

our fuzzy cosine distance search space (Section 4.2) is very similar

to band optimization algorithms.

3 METRIC SPACE INDEXING

A metric space (V, Dmet) is defined by a non-empty set V and a

non-negative distance function Dmet(v1, v2) over objects v1, v2 in V,
that satisfies the following conditions:

(1) Dmet (v1, v2) ¼ 0 iff v1 ¼ v2 (identity)

(2) Dmet(v1, v2) ¼ Dmet(v2, v1) (symmetry)

(3) Dmet(v1, v2) + Dmet(v2, v3) � Dmet(v1, v3) (triangle inequality)

A distance function that satisfies identity and symmetry but fails

the triangle inequality is called a semi-metric. A distance function

D which fails the identity condition in one direction (9v1 6¼ v2,
D(v1, v2) ¼ 0) is called a pseudometric. A function with both

these properties is called a semi-pseudometric. In this paper, we

use semi-pseudometric interchangeably with semi-metric.

A range query on a metric spaceM¼ (V,Dmet) returns all points v
within a given distance r from a query q (Dmet(v, q)� r). A k-nearest
neighbour (k-NN) query on M returns the k closest points to query

point q. The radius bounded k-NN query, used in this paper, returns

up to k points that are within distance r from q. Using the triangle

inequality, an index built over a metric space can avoid distance

computations with points unlikely to be within radius r of q, as
described in Section Section 4.6, and reduce search time.

In a pivot-based index structure (Chavez et al., 2001), like the

VP tree, the search space is partitioned into disjoint regions recur-

sively. In each recursion, one or more pivots (vantage points or VPs)

are first selected. Then, the data points are partitioned into two (or

more) disjoint branches based on their distances from the pivot(s).

Multi-Vantage Point, or MVP-trees (Bozkaya and Ozsoyoglu,

1997) extend VP-trees by increasing the number of disjoint datasets

into which a dataset is partitioned. Specifically, in a metric space

search of radius r for query q, given a pivot pi and a metric distance

function d, we would prune all points u such that

jdðu‚piÞ � dðq‚piÞj > r: ð1Þ

An ideal search proceeds down only one branch of each pivot,

effectively pruning all points in other branches, by applying the

triangle inequality on the pivot and query points. However more

than one branch may be pursued depending on the value of radius r
in range search or k in k-NN.

4 RESULTS

4.1 Vector representation and distance functions

To leverage the properties of a metric space, a metric distance

function with a suitable data representation must first be defined.
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We investigated two data representations and three distance metrics.

While indexing mass spectra in a metric space can greatly reduce

the size of the initial candidate set, it must also be discriminative

enough to return a relevant candidate set. Finding a suitable balance

between the two objectives is difficult and approximate searches are

always accompanied by a recall-precision (sensitivity-specificity)

tradeoff. Intuitively, any combination of data representation and

distance metric must ensure that we count peaks that differ by

one or more known amounts. We investigated a high-dimensional

data representation as defined below with less precise distance

metrics (fuzzy and tandem cosine distance) and a low-dimensional

data representation with an exact distance metric (Hamming

distance, discussed in the Supplementary Material).

Given a list of m/z peaks P, resolution 0 � Mres < 1.0 Da, and

mass range [M1, M2] Da, we define a high-dimensional boolean

vector S in (0, 1)N space, where N ¼ (M2 � M1 + 1)/Mres:

S½i� ¼
1 9p 2 P‚ðp � Mres � iÞ � Mres‚ and

ðp � Mres � ði � 1ÞÞ > Mres

0 otherwise:

8<
: ð2Þ

The second condition ensures that each peak in P maps to only

one non-zero entry in S (0 � i � N). For a mass range [100, 5000]

Da, and Mres ¼ 0.1 Da, S is a sparse �49 000 dimension vector.

Though Equation (2) defines equi-sized boolean vectors, our imple-

mentation uses non-boolean compressed vectors storing m/z values
directly.

4.2 Fuzzy cosine distance

Given two N-dimensional boolean vectors, A and B as defined

above, where ai ¼ A[i] and bj ¼ B[j], and a peak mass tolerance

tms � Mres, we can define SPC within a peak tolerance window

t ¼ tms/Mres as

SPCtðA‚BÞ ¼
X
i

matchðai‚bjÞ; j 2 ½i � t‚ i + t� ð3Þ

matchðai‚bjÞ ¼
1 ai ¼ bj ¼ 1

matchðam‚bjÞ ¼ 0‚m 2½1‚ iÞ
0 otherwise:

8<
: ð4Þ

Equation (4) counts two peaks as equal (a match) if they lie

within t vector elements of each other. The second condition ensures

that one peak counts exactly as one match—multiple matches are

not counted. We observe that for zero peak tolerance (tms¼ 0, t¼ 0)

the shared peaks count reduces to the dot product on boolean

vectors.

SPCtðA‚BÞ ¼
X
i

matchðai‚biÞ ¼ A ·B: ð5Þ

We also note that cosine similarity is defined as the normalized

dot-product between two vectors.

CosðA‚BÞ ¼ A ·B

kAk kBk ‚ ð6Þ

where kAk is the L2 norm over vector A. Modifying Equation (6) for

tms > 0, we define a fuzzy cosine similarity measure:

CostðA‚BÞ ¼
SPCtðA‚BÞ
kAk kBk : ð7Þ

Finally in Equation (8) we define fuzzy cosine distance, Dms,

as the inverse cosine of Cost. Dms is a semi-pseudometric; as a

consequence of the tolerance window, Dms may not satisfy the

triangle inequality and it is possible that Dms(A, B) ¼ 0, A 6¼ B.

DmsðA‚BÞ ¼ arccosðCostðA‚BÞÞ: ð8Þ

4.3 Tandem cosine distance

Peptides with vastly differing precursor masses are unlikely to be

similar, and should be further apart in the vector space. Tandem

cosine distance factors a peptide precursor mass term into fuzzy

cosine distance. Given peptide sequences A, B and precursor masses

MA, MB, we define tandem cosine distance Dtcd as

DtcdðA‚BÞ ¼ c1DmsðA‚BÞ + c2DpmðA‚BÞ‚ ð9Þ

where c1, c2 are constants. Dpm computes absolute difference in

precursor mass within a tolerance window. In order to account

for slight differences in analytical and experimentally measured

precursor mass (Figure S5, Supplementary Material), we introduce

a precursor mass tolerance factor, tpm and define Dpm as

DpmðA‚BÞ ¼
0 jMA � MBj � tpm
jMA � MBj otherwise

�
ð10Þ

Dpm is also a semi-pseudometric owing to the precursor mass

tolerance tpm, and by the additive property of metric spaces, so

is tandem cosine distance Dtcd. However, Dtcd is a better coarse

filter for reasons detailed in Section 4.5 and reduces search time

drastically when compared with fuzzy cosine distance. Since the

precursor mass error between predicted and measured spectra,

like peak mass error, can be modeled as following a normal

distribution (Zhang and Chait, 2000), an exponential term in

place of the linear Dpm might be a more faithful representation

of the error model. We could replace Dpm by Dexp ¼ 1 � Sexp,
where Sexp ¼ c2 exp�c1jMA�MBj2 . However, Dexp is not a metric dis-

tance, and even metric space mappings that are approximations

of the normal distribution have high intrinsic dimensionality

(we tried Sexp ¼ exp�c1jMA�MB j); suggesting poor metric space

index performance as discussed in Section 4.5 (for details see

Figures 6a and 6b in the Supplementary Material).

4.4 Comparison with a simple precursor mass filter

Dpm is mathematically equivalent to a simple precursor mass based

filter. To compare the effectiveness of adding a fuzzy cosine dis-

tance term, we compared the performance of a metric space index

using both a simple precursor mass filter (Dpm) and a linear com-

bination of precursor mass filter and fuzzy cosine distance (Dtcd). As

Figure 1 shows, the percentage of database returned by Dtcd is an

order of magnitude less than that returned by Dpm. Dpm returns a

large number of false positives, which are eliminated by Dtcd’s

fuzzy cosine distance term. Even though Dpm computes a smaller

number of distances (faster and coarser filter) at acceptable radii,

both functions search <0.5% of the database in this experiment

(Figure S4, Supplementary Material). Our coarse filter function,

Dtcd, thus effectively combines both the speed of simple precursor

mass filtering and the higher accuracy of fuzzy cosine distance

into a single distance function. In fact, using SEQUEST as an ad

hoc example fine filter on the output of our Dtcd coarse filter on

Database II, search times were about seven times faster per query

than SEQUEST searches on the complete Database II (E.coli +
Human + 7 protein). Section 6 has a larger discussion on run

time measurement issues.
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4.5 Reducing the intrinsic dimensionality

The curse of dimensionality (Chavez et al., 2001) refers to the

phenomenon of algorithmic performance degrading exponentially

with increase in intrinsic dimensionality. Dimensionality is not

easily defined for metric spaces with no geometric restrictions on

objects. An alternative is to define the intrinsic dimensionality as

r ¼ ðm2=2s2Þ where m and s are the mean and variance of a

histogram of pairwise distances (Chavez et al., 2001). Owing to

high intrinsic dimensionality of the search space, an exact metric

space solution to our problem suffers from the curse of dimension-

ality and is only slightly more efficient than a linear scan.

In the metric space indexing world, histograms with relatively

smaller means and larger variances usually indicate better search

efficiency (Chavez et al., 2001). Pairwise distance histograms of

exact and fuzzy cosine distance in Figure 2a have small variances

and large means. A corresponding Figure 2b for tandem cosine

distance has larger variance and smaller mean indicating that

tandem cosine distance is a better distance function for this

index (the terms ‘small’ and ‘large’ are relative to the range of

expected distance values). Also, semi-metric distance functions

may have the effect of reducing the intrinsic dimensionality of

the search space. This has also been observed in document vector

spaces (Skopal et al., 2004). Values for r support this hypothesis

(Fig. 2). However, we need to modify standard metric space indexes

to use semi-metric distance functions.

4.6 Modifying the index for a semi-metric search

A distance function d is a semi-metric if it fails the triangle inequal-

ity i.e. d(q, p) + d(p, u) < d(q, u). However, if there exists some upper

bound k such that d(q, p) + d(p, u) + k � d(q, u), we say d fails the

triangle inequality by this amount k. In this case, there may exist

some point u and query q such that d(q, u) + k > r, but d(q, u) < r,
causing u to be incorrectly pruned. However, if we can predict an

upper bound, ku on k, the metric space index equations can be

adjusted (Sahinalp et al., 2003) or fixed to return exact results.

We briefly describe our procedure for the case of MVP-trees.

Equation (1) can be modified to

jdðu‚piÞ � dðq‚piÞj > ðr + kuÞ: ð11Þ

All points lying within distance r from the query are

returned—only the pruning equations are adjusted using ku. For

tandem cosine distance, we can derive (proof omitted) a loose

upper bound ku ¼ ðp=2Þ + 2tpm‚ when every peak in one vector

differs from its corresponding matching peak in the other spectrum

by the peak tolerance tms. In practice however, setting k ¼ ku
generates a large number of false positives owing to conservative
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radius (R¼ 1.48 forDtcd), while the precursor mass based filter,Dpm, returns

0.25% of the database at acceptable radius (R ¼ 0.0 for Dpm) on Database I

using tpm ¼ 2.0 Da.
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Fig. 2. Frequency plots of distances between pairs of spectra using

exact cosine distance (peak tolerance tms ¼ 0 Da) and fuzzy cosine distance

(tms¼ 0.8Da) in (a) and tandemcosine distance in (b). From the graphs, exact

and fuzzy cosine distance in (a) have lower variance s2, and thus higher

intrinsic dimensionality r ¼ ðm2=2s2Þ—making these distance metrics

less suitable for metric space indexing than tandem cosine distance. Intrinsic

dimensionality is also expected to reduce with increase in the semi-metric

nature of the search (increasing tms and precursor mass tolerance tpm).

Indeed, for fuzzy cosine distance: r ’ 579 (tms ¼ 0 Da), r ’ 445

(tms ¼ 0.2 Da) and r ’ 176 (tms ¼ 2.2 Da). For tandem cosine distance:

r ’ 0.62 (tms ¼ 0.2 Da, tpm ¼ 2.0 Da). Exact and fuzzy cosine range from

0 to p/2 and tandem cosine ranges from 0 to about 5000. Spectra were

randomly sampled from Database III in Table 1.
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pruning. Searches using lower k values may be approximate, but are

faster owing to aggressive pruning opportunities. A k that maintains

reasonable accuracy is dataset dependent and must be empirically

determined. We set k ¼ tms + tpm � ku and this was sufficient

to retrieve all true positives, while keeping the number of false

positives small.

5 EXPERIMENTAL EVALUATION

The underlying MVP-tree implementation is part of MoBIoS

(Miranker and Mao, 2003), a special purpose database manage-

ment system for molecular biology. MoBIoS comprises an

object-relational storage manager extended with metric-space

indexes, a query language (MoBIoS SQL or mSQL), and built-in

data types for biological sequences (Xu et al., 2004) and mass-

spectra. We ran range and k-NN queries using the MVP tree

index structure modified to incorporate semi-metric searches.

Our experiments test the capability of the index to prune distance

computation, reducing the number of distance computations and in

turn wall clock time, while returning all true positives (i.e. identify-

ing all 49 spectra and thus seven proteins correctly in Databases I

and II) and limiting the size of the result set. The test databases

and query sets in Table 1 are open source proteomics data from

the Open Proteomics Database (Prince et al., 2004) and Sashimi

(sashimi.sourceforge.net). Database I contains theoretical spectra

from the E.coli K12 (E.coli) genome and a seven protein mixture

from the Sashimi proteomics repository. Database II combines

Database I with theoretical mass spectra from the human genome.

The digest parameters used for all databases are in Table 2. We

constructed our ground truth set (query set) of 49 spectra by first

identifying the 4000+ scans of the Sashimi seven protein mixture,

using BioWorks 3.1 (peptide identification software), and choosing

all +2 charged spectra that were identified with XCorr score >2.4.
To determine the acceptable values of r and k given in Table 1, we

plotted the percentage of true positives returned versus r (Figure 1a,
Supplementary Material) and k (Figure 1b, Supplementary

Material), and chose r and k as the smallest values for which all

true positives were returned.

5.1 Index performance

We measure the percentage of database searched and returned for

range and k-NN queries. Among all distance metrics, tandem cosine

distance gave the best reduction in both measures. Figure 3 shows

the percentage of database searched and returned for tandem cosine

distance. At acceptable radius r ¼ 1.48, tandem cosine distance

searches an average of �0.5% of the database and returns

�0.02% of the database. On the other hand, as shown in

Figure 4, fuzzy cosine distance with no precursor mass difference

term (Dms) searches �95% of the database at acceptable radii, and

thus is not a good coarse filter. Figure S3 (Supplementary Material)

plots the percentage of results returned by fuzzy cosine distance.

Figure 5 shows the percentage of database searched using a radius

bounded k-NN search. The size of the candidate set is reduced to

<20 spectra. Increasing k up to 100 on other databases, k-NN
searches still produce smaller candidate sets (reduce the number

of results returned) when compared with range searches. To sum-

marize, both k-NN and range queries search <0.5% of the entire

database, with k-NN producing smaller candidate sets.

5.2 Scalability

We want to ensure that the gains obtained using a coarse filtering

stage scale with the size of the database. Ideally we want a constant

number of distance computations per query, independent of data-

base size. Radius bounded k-NN searches are expected to provide

better scalability than range searches. To test performance with

Table 1. Description of test databases

Database Database Database Test set

description size size

Database I E.Coli K12 + 7

protein mix

92 769 49 (7 protein mix)

Database II Database I + Human 654 276 49 (7 protein mix)

Database III E.Coli K12 92 373 14 (E.coli)

Acceptable radius for Dtcd is 1.48 for Database I and II and 1.46 for Database III.

Acceptable k values for k-NN search are k < 20 for Databases I and II. The test set

for Database III is from the Open Proteomics Database (Prince et al., 2004), accession

number opd00006_ECOLI.

Table 2. Digest parameters for Database I of Table 1

E.coli K12 proteins 4824

Mixed proteins 15 (7 plus isoforms of Myosin)

Total database size 92 769 fragmentation spectra

Fragment mass tolerance 0.2 Da

Precursor mass tolerance 2.0 Da

Known modifications none

Charge state +2
Ion type b, y

Missed cleavages 0

Protease Trypsin

Mass range 0–5000 Da
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Fig. 3. Number of distance computations and returned results as a percentage

of database size plotted against range query radius, using tandem cosine

distance on Databases I and II. At an acceptable radius of R ¼ 1.48, the

number of returned results is <0.02% of the database size, and the number

of distance computations is only 0.5% of the database size.
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database size, we created multiple small databases from Database II

in Table 1, which consists of 654 276 theoretical fragmentation

spectra: E.coli and human proteins combined with the seven protein

mixture used in Section 5.1. For each small database, we ran a radius

bounded k-NN search, using bounding radius R and k that return

100% true positives. Figure 6 shows the number of distance com-

putations per database. The number of distance computations

remain near constant as database size increases for fixed k and R.
Using k ¼ 253 across all databases, we get near constant scal-

ability. k ¼ 100 results in fewer distance computations but is less

accurate, returning only 98% of the true positives for databases with

>400 000 spectra. The third curve in Figure 6 uses k ¼ 100 for a

smaller databases (maintaining scalability and returning 100% true

positives at fewer distance computations) and then switches to a

higher k ¼ 253 for larger databases.

6 DISCUSSION

6.1 Fine filtering

Our coarse filter can be combined with any fine ranking scheme for

mass spectra identification. Since fine ranking schemes are compu-

tationally expensive, an initial coarse filtering stage should reduce

overall search time by reducing the number of spectra input to the

fine ranking stage. We tested a combined coarse filtering-fine rank-

ing system which ranks each result produced by the coarse filter,

using a version of ProFound’s (Zhang and Chait, 2000) Bayesian

scoring scheme. We ran tests on a few pre-identified human peptide

fingerprint spectra, as well as on 14 E.coli peptide fragmenta-

tion spectra (Database III in Table 1). We only use the spectra

in Database III to illustrate the viability of a combined scheme

for a number of reasons. First, the main goal of this paper is to

identify a coarse filter suitable for mass spectra. Second, given high

sample complexity and the difficulty in predicting the exact frag-

mentation pattern for a peptide of given sequence, it is nearly

impossible to acquire unambiguously identified complex spectra

to test this combined system. Third, the investigation of whether

the Bayesian fine filtering scheme will provide high confidence

identification of the protein mixtures in Databases I and II deserves

a separate study, independent of the coarse filtering or indexing

schemes.

To check correctness of the ranking scheme, we defined a

ground truth set using the top hit per query from TurboSEQUEST

(Yates III et al., 1995). This top result is expected to be correct

because it also had high protein and peptide probability scores from

ProteinProphet and PeptideProphet (Nesvizhskii et al., 2003; Keller
et al., 2002). In all queries, our fine filter ranked this ‘correct

answer’ as the top hit, with an identification probability of >99%
in most cases. The scores between first and second ranked peptides
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differed by at least three and up to eight orders of magnitude in

many cases. Prototype versions of the MoBIoSFound system

(coarse filtering followed by fine filtering) for peptide mass finger-

printing and tandem MS identification are available online (http://

aug.csres.utexas.edu:8080/). To summarize, this combined system

demonstrates the feasability of combining the accuracy of a fine

ranking scheme, with the speedup gain of the coarse filtering stage.

6.2 Scalability and run time measurements

We use a version of k-NN radius bounded search that relaxes the

requirement that the k best neighbours are returned first (Xu et al.,
2003); the nearest point will be returned first, but the next k� 1 may

not be the nearest to the query (Fig. 6). This version is expected to

have better scalability, with acceptable accuracy. But since the top

hit for our application is determined by the fine ranking phase, the

topmost hit may not be ‘nearest’ to the query in the coarse filtering

phase, especially as database size grows, and we have to increase k
to achieve 100% accuracy. This suggests that lower k values can be
used if a fine ranking ‘metric’ distance can directly be incorporated

into the index, instead of a two-step coarse-fine filter solution.

A reason to account for the increase in k and in the number of

distances between database size 400 000 and 500 000 in Figure 6

is that although the system is main-memory based in this study,

the MoBIoS MVP-tree is organized for pagination to disk. Our

MVP-tree implementation has discontinuous increases in height

as the database grows, much like the depth of a B+ tree in relational

databases (Ramakrishnan and Gehrke, 2003). Hence the perfor-

mance is subject to sudden increments when the index increases

height.

We have proposed that by simply feeding the coarse filter’s out-

put as input to a system like SEQUEST, we can achieve significant

runtime speedup. However, comparative timing measurements

require access to the internals of existing systems. For instance,

we need to be able to measure both predicted database creation time

and actual search time. We need I/O cost estimates to measure disk

write times and also include possibilities of internal caching. With

no source code access to proprietary systems, it is impossible to

determine and compare the time taken by different stages, and

timing measurements are not very meaningful as absolute measures

of comparison. However, under simple assumptions of operation,

available runtime studies are already encouraging. We compared

SEQUEST run times on the entire predicted database against those

on a reduced predicted database created from the candidate set

identified by the coarse filter. For Database II queries, SEQUEST

searches on the reduced databases were about seven times faster per

query than searches on the entire Database II. We expect source

code level integration of fine and coarse filters to result in higher

speedups.

7 CONCLUSIONS

We identify a ‘coarse filtering-fine ranking’ metric space indexing

approach for protein mass spectra database searches. Our coarse

filter approach speeds up searches by reducing both the number

of distance computations in the index search and the number of

candidate spectra input to a fine filtering stage.

We achieve fast, lossless metric space indexing of high-

dimensional mass spectra vectors by defining a number of biolo-

gically meaningful and computationally efficient distance measures

that account for peak shift and precursor mass error. Tandem cosine

distance is the most efficient of these, achieving maximal reduction

in the intrinsic dimensionality of the search space. This enables the

creation of indexes with sufficient pruning power to reduce the

number of distance computations to <0.5% of the database and

the number of candidates for fine filtering to �0.02% of the

database. We demonstrate scalable index perfomance for different

database sizes using a version of k-NN search. Available runtime

measurements support the speedup hypothesis.

The speedups owing to coarse filtering open up possibilities for

the automatic detection of mutations and modifications. Currently,

the virtual database approach is computationally infeasible owing to

the exponential blowup in database size because of the addition of

all theoretically possible modified spectra. Alternatives (Pevzner

et al., 2001) use algorithmically expensive search functions. In

a combined system, virtual databases can be large and distance

functions can be more accurate and expensive (e.g. a metric distance

approximation of the Pevzner et al., 2001 algorithm), since we

search only a fraction of the database. An alternate solution to

searching for mutations/modifications is to identify and evaluate

other (semi) metric distances that take larger peak shifts into

account, like coarse resolution Hamming distance with precursor

mass constraints. Also, if we can identify a metric fine ranking

function (or a metric approximation), fine scoring can be incorpo-

rated into the index; resulting in an integrated fast and accurate

search model.
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