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1. Experimental details and data sources 
This section describes preparation of cells and mass spectrometry samples, MS setup and data analysis, mRNA 

collection and analysis (for human) and references of published data used.  

Table S1.  Experiment setup and datasets - Overview 
In each experiment, we collected protein identifications via MS/MS to form a ‘test set’. We generated 

MSpresso protein identification scores for each ‘boostable’ protein: a protein that has an observed primary protein 
identification score (S>0) and an observed mRNA concentration (M>0). We used the ‘protein reference set’ as a 
ground-truth set to estimate MSpresso probabilities, and to determine true and false identifications during 
evaluation. inj – injection, i.e. technical replicate during MS/MS experiment; LCQ – LCQ DecaXP+ MS/MS 
instrument; ORBI – LTQ-OrbiTrap MS/MS instrument; gte2 – greater than or equal 2, i.e. requirement for protein 
being observed in at least two independent datasets 

 
Experiment Test set Protein reference set ‘Boostable’ 

proteins  

Yeast-YPD-LCQ Cell lysate, rich medium (YPD), LCQ (5inj) 4 published MS-based datasets (gte2) 867 

Yeast-YPD-ORBI Cell lysate, rich medium (YPD), ORBI (8inj) 4 published MS-based datasets (gte2) 2136 

Yeast-YMD-LCQ Cell lysate, minimal medium (YMD),  LCQ (6inj) 3 published protein datasets 886 

Yeast-Fraction-LCQ Cell lysate, fractionated in polysomal gradient, rich 
medium (YPD), LCQ (3inj) 

Known ribosomal, translation and ribosome 
biogenesis proteins  

270 

E. coli-ORBI Cell lysate, minimal medium (MOPS9), ORBI (3inj) 2 published 2D-gel-based datasets 860 

Human-DaoyWT-LCQ Cell lysate from Daoy, LCQ (2inj) 10 injections of same sample (ORBI) 891 

Human-DaoyWT-ORBI Cell lysate from Daoy, ORBI (1inj) 9 injections of same sample (ORBI) 515 

 

1.1. Sample preparation for MS/MS analysis 
The following general protocol was used for yeast and human. The E.coli sample was prepared by a protocol 

described by Lu et al [1]. Cells were broken using glass beads or a homogenizer, and cellular lysate was extracted 
by 50 min centrifugation at 5,000g. Lysis buffer consisted of 25mM Tris HCL pH 7.5, 5mM DTT, 1.0mM EDTA, 
1X CPICPS (Calbiochem protease inhibitor cocktail). Protein concentration was measured and lysate diluted to 
2mg/ml with buffer (50mM Tris, pH 8.0).  For a typical sample preparation (~2 injections on LCQ; ~4 injections 
on LTQ-OrbiTrap) 50ul of diluted cell lysate was mixed with 50 µl 100% trifluoroethanol and incubated at 55C 
for 45min (15mM DTT). The sample was cooled to room temperature and incubated with 55mM iodoacetamide 
in dark for 30 min. The sample was then diluted to 1ml with buffer (50mM Tris, pH 8.0) and 1:50 w/w Trypsin 
was added to digest for 4.5hrs. Tryptic digest was halted by adding 20 µl in 1ml formic acid (resulting in 2% v/v). 
The sample was lyophilized to 20ul, resuspended in buffer C (95% H2O, 5% acetonitrile, 0.01% formic acid) and 
washed using a C18 tip (ThermoFinnegan). The eluted sample was again lyophilized to 10 µl, resuspended in 
120 µl buffer C and filtered through a Microcon-10 filter (for 50min at 12,000g). The sample was ready for 
MS/MS analysis.  

1.2. Yeast grown in rich or minimal medium  
The yeast experimental data for the LCQ analysis was prepared as described by Lu et al. [1]. The yeast protein 

extraction and trypsin digestion for the LTQ-OrbiTrap analysis were performed identically to that described 
above (section 1.1.). For mass spectrometry analysis, eight runs were performed on an LTQ-Orbitrap varying a 
range of parameters for optimization. SCX salt steps were performed by injecting 10 µl of Ammonium Chloride 
solutions of varying molarity, namely (0, 15, 60, 900) mM or (0, 20, 100, 900) mM in a 5% ACN, 0.1% Formic 
Acid background onto a strong cation exchange column (Thermo BioBasic-SCX 100mm X 0.180 mm ID) with a 
flow rate of 800 nl/min. Reverse phase chromatography was performed on a Thermo BioBasic-18 column 100mm 
X 0.10 mm ID running 38 nl/min for 90 or 120 minutes with varying ACN concentrations on a background of 
0.1% Formic Acid. The column eluent was nano-electro-sprayed at 1.95kV from a 10  µm tip (New Objective). 
FTMS resolution was set at 60,000 or 100,000. Between 6 and 10 MS/MS spectra (using 1 or 3 microscans) were 
acquired per MS scan. Many other individual parameters were varied including exclusion list settings, charge 
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state rejection, mono-isotopic precursor selection, minimum signal required for MS2 scanning, MS2 isolation 
width, and use of a mass lock (445.120025). 

Each of the eight runs was analyzed independently with Bioworks (ThermoFinnegan), searching a database of 
yeast sequences. The results were combined for analysis by PeptideProphet [2] and ProteinProphet [3].  

Further information on the MS/MS analyses and the raw data can be found at http://marcottelab.org/MSdata/. 

Table S2. Datasets for yeast grown in rich medium (YPD) 
All data sets were derived from wild-type yeast, grown at 30°C in rich medium to mid-log phase. Experimental 
details are provided in the respective publications. **non-membrane proteins only (some proteins in this set may 
not have observed mRNA abundances); *non-membrane proteins that also have observed mRNA abundances; ^ 
including membrane proteins that also have observed mRNA abundance; ^^ including membrane protein.  

Method Reference 
RNA  

Serial analysis of gene expression (SAGE)  [5] 
Single channel microarrays  [6] 
Dual channel microarray with genomic DNA as reference [7] 

mRNA set (YR3gte2) 4148*(5174^) 
PROTEIN  

Flow cytometry of GFP-labeled proteins [8] 
Western blot [9] 
2D-gel electrophoresis [10] 

Non-MS-based reference (YP3) 3191*  (3443**, 3806^, 4087^^,4097) 
1D-gel electrophoresis, LC-MS on linear ion-trap FT [11] 
Multi-dimensional LC MS/MS [12] 
LC/LC MS/MS [13] 
Electron transfer dissociation  (ETD) mass spectrometry (to 
measure phosphorylation); nanoflow-HPLC/ESI MS/MS 

[14] 

 MS-based reference set (YP4gte2) 1433* (1648**) 
LC/LC MS/MS LTQ-OrbiTrap Own data 

Union of all 8 protein reference sets (YP8) 3582* (3895**) 
 

Table S3. Training and reference datasets for yeast grown in minimal medium (YMD) 
All datasets are derived from wild-type yeast grown in minimal medium (YMD) to log-phase. Experimental details 
are described in the respective publications. * non-transmembrane proteins with mRNA abundances only; ** non-
transmembrane proteins only (some of these proteins might not have observed mRNA abundances) 

Method Reference 
RNA  

Single channel microarray (AFFYMETRIX) [15] 
mRNA set 4716* (6014) 
PROTEIN  

Flow-cytometry analysis of GFP labeled proteins [8] 
Non-MS-based reference set 1791* (1831**, 2214) 

MS/MS [16] 
MS/MS [17] 

MS-based reference set 768* (799**, 1025) 
Union of all 3 protein sets 1948* (2063**, 2529) 

 

1.3.  E. coli grown in minimal medium 

Table S4. E. coli training and reference datasets.  
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All datasets are derived from wild-type E. coli grown in minimal medium (MOPS9) to log-phase. For experimental 
details, please refer to the individual publications. The proteomics analysis of the E. coli cell lysate was conducted 
in a manner identical to that described above and in reference [1]. * non-transmembrane proteins that also have 
observed mRNA abundances 

Method Reference 
RNA  

Single channel microarray [18] 
Single channel microarray [19] 
Single channel microarray [20] 

mRNA set (ERgte2) 1769* (2470) 
PROTEIN  

2D-gel electrophoresis [21] 
2D-gel electrophoresis [22] 

ECOLI-2: Non-MS-based reference set 370* (394) 
 

1.4. Human Daoy medulloblastoma cells 
The medulloblastoma Daoy cell line was obtained from American Type Culture Collection (ATCC). Cells 

were cultured in improved minimum essential medium (IMEM) (Invitrogen, Carlsbad, CA) supplemented with 
10% fetal bovine serum (Atlanta Biologicals, Inc., Lawrenceville, GA). Cells were grown until 90% confluence 
and then harvested to prepare RNA and protein extracts for further analyses.  

RNA was extracted with Trizol (Invitrogen) and subsequently purified with an RNAeasy micro kit (Qiagen, 
Germany). Samples were labeled and hybridized to Nimblegen human HG18 microarrays (Madison, WI) 
according to their protocols. Microarrays were scanned using an Agilent Microarray Scanner G2565AA and 
quantified using Agilent feature Extraction Software version 9.1. Analysis of microarray data was done using the 
Bioconductor (www.bioconductor.org) packages marray, arrayQuality, limma and arrayMagic. Array quality was 
assessed using MA and other diagnostic plots. Arrays were background corrected and normalized between arrays 
using the quantile normalization method. Spot fluorescence intensities were then used as the measure of mRNA 
concentration (arbitrary units).   

To prepare protein extracts, Daoy cells were re-suspended in an equal volume of lysis buffer (50mM Tris pH 
8.0, 50mM NaCl, 1mM EDTA and 1 tablet of Complete Proteinase Inhibitor (Roche)/10ml) and incubated on ice 
for 30 minutes. Cells were then lysed with a dounce homogenizer and the soluble protein extracts obtained after 
centrifugation. Protein samples were prepared for mass spectrometry as described above. 

Table S5. Human test and reference datasets 
The proteomics and transcriptomics analysis was performed as described in section 1.1. and 1.4. * non-
transmembrane proteins that also have observed mRNA abundances; * non-transmembrane proteins that also 
have observed mRNA abundances; **non-membrane proteins only (some proteins in this set may not have 
observed mRNA abundances) 

Method Reference 
RNA  

Single channel microarray Unpublished data (L. Penalva) 
mRNA set 9784* (13340) 

Replicate A – MS/MS analysis LTQ-OrbiTrap http://marcottelab.org/MSdata/  
HUMAN-9: PROTEIN REFERENCE 786* (1170**, 1477) 

HUMAN-10: PROTEIN REFERENCE 844* (1266**, 1586) 
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2. Discussion of computation and statistics 

2.1.  Derivation of the MSpresso score 
The MSpresso score is defined as the posterior probability P(K=1|S=s, M=m) that the protein is present in the 

sample having observed it in an MS/MS experiment with an identification score (S=s), and having observed its 
mRNA at particular concentration (M=m) under similar experimental conditions. Notation, and a partial 
derivation were detailed in the Methods section of the main text. The full derivation is given below. 

Equation SE1  

€ 

P(K =1 | M = m,S = s)
= P(K | M,S) (equivalent short notation)

=
P(K,M,S)
P(M,S)

 (Bayes rule)

=
P(K,M,S)
P(K,M,S)

K= 0,1
∑

=
P(S)P(K | S)P(M |K,S)
P(S)P(K | S)P(M |K,S)

K= 0,1
∑

=
P(S)P(K | S)P(M |K)
P(S)P(K | S)P(M |K)

K= 0,1
∑

 (conditional independence :  (M⊥S) |K)

=
P(S)P(K | S) P(K | M)P(M)

P(K)( )
P(S)P(K | S) P(K | M)P(M)

P(K)( )
K= 0,1
∑

=

P(K | S)P(K | M)
P(K)

P(K | S)P(K | M)
P(K)

K= 0,1
∑

 (P(S), P(M) can be moved out of the summation, and cancelled)

 

 

2.2. Estimating P(K) 
We use a uniform prior distribution for P(K), and estimate P(K=1)=2/3 based on observed proteins in various 

yeast rich-medium datasets. These datasets and their intersections (P-value<0.001, hypergeometric distribution) 
are illustrated in Figure S1. P(K) acts as a proportionality constant (main text, Methods, Equation 3), and 
changing P(K) does not change the relative ordering of the scores. This implies that ROC plots do not change 
with varying P(K). However, varying P(K) affects the actual values of the MSpresso scores, and the more realistic 
values of P(K) are, the better do the MSpresso scores estimate ‘true  probabilities’. 

2.3.  Generalizing P(K|M) 
When high-quality protein reference data is unavailable, we derive two models to generalize P(K|M): SCALE_UP 
and SCALE_DOWN, as described in the main text. These are dubbed ‘reuse’ models – the P(K|M) distribution is 
learnt from a reliable dataset, generalized and reused on other datasets where protein reference data is limited, but 
mRNA data is available. Figure S2(A-C) shows the P(K|M) models learned from reference data for the different 
datasets. The general trend is towards a step-function with linear interpolation between steps as shown in Figure 
S2D, scaling the x- and y- axis results in different ‘reuse’ models. Table S10 includes results on using the ‘reuse’ 
model on other datasets and organisms. 
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2.4.  Conditional independence of S and M 
The MSpresso score assumes conditional independence between M and S given K. In other words, the value of 

mRNA abundance should be independent of the value of the protein identification score, when we know the 
protein is (is not) in the sample. Figures S3A and B show scatter-plots for S and M for proteins that are present 
(or absent) from a reference set, i.e. the value of K is known (1 or 0, respectively). Figure S3A plots those 
proteins for which K=1, the proteins that are present in at least two of the four mass spectrometry based reference 
datasets (Table S1, YP4GTE2). Figure S3B is the corresponding figure for K=0, only those proteins that are 
absent from all four datasets.  

There is little correlation between S and M for K=0 (Figure S3B), though K=1 shows a slightly stronger 
correlation, as revealed by bin-averaging (Figure S3A). Protein identification scores S are also only weakly 
correlated with abundance measurements other than mRNA concentration (M), i.e. protein concentration 
determined by Western blotting (Figure S3C). For these reasons, we think that it is justified to employ the 
conditional independence assumption, as a first simple model of the relationship between S and M on a global 
proteome-wide scale.  

2.5.  Discussion of error estimates 
Protein identification methods (e.g. ProteinProphet [3], MSpresso) generate protein scores that indicate the 

probability that a protein is present in the sample. For practical purposes, current methods also present a list of 
high-confidence proteins, based on some error estimate e.g. 5% False Positive Rate. A review of different error 
estimates for mass spectrometry proteomics is in Choi et al. [23] 

To compute such a list of high-confidence, above-threshold identifications we need a list of proteins with 
scores and a classical hypothesis testing framework. Our goal is to compute a significance threshold such that 
proteins with scores better than the threshold are marked ‘significant’. To do so we must a) define the notion of a 
null hypothesis, and b) define a ground truth set that identifies which proteins satisfy the null hypothesis (‘null’ or 
‘decoy’ proteins) and thereby also tell which proteins do not satisfy it. The null hypothesis is that the tested 
protein is not present in the sample. There is no such ‘ground-truth’ available today that describes the complete 
expressed proteome in yeast, and to employ a hypothesis testing framework we must first estimate this set. As 
described in the main text, we compile a reference set to estimate this ground truth, and assume all proteins absent 
from this set are ‘null’ or decoy proteins. In section 2.5 below we discuss alternate definitions of ground truth or 
‘decoy’ sets and how to choose good decoy datasets. 

Figure S4 illustrates the concept of true and false positive identifications. True and false identifications are 
dependent on the ground truth set and hence all error estimates should be considered in the context of the ground 
truth (reference) set. Ideally, all ground truth sets will converge to a single truth: the ‘true’ expressed proteome.  

Once we have some notion of a ground truth to define null proteins, we can define different error estimates. A 
commonly used error estimate is the False Discovery Rate (FDR), which is defined as the percentage of false 
positive identifications amongst all identified proteins. FDR may be estimated by the quantity FP/(FP+TP) 
(Figure S4). The FDR is the global or cumulative version of what is referred to as the local FDR, or in Bayesian 
terms, the posterior error probability P(false-hit|data)[24]. Another error estimate is the False Positive Rate (used 
in the main paper): defined as the percentage of all false hits present among reported proteins.  

FDR and FPR are global significance estimates i.e. they determine a score threshold over all proteins, and 
answer the question ‘how many proteins are reported at x% error rate, or at score threshold=sx (Figure S4). 
Sometimes, we are interested in per-protein measures: asking the question ‘what is the smallest error rate at which 
this protein can still be called a significant discovery’. The q-value, introduced by Storey & Tibshirani [25] is 
such a measure. It is defined as the minimum FDR at which a protein with score s will be called significant. Note 
the analogy to p-values: a p-value is the minimum FPR at which a protein will be called significant. A detailed 
discussion can be found in Storey & Tibshirani [25]. 

The FDR and FPR, as defined above (see below for another definition of FDR without a ground-truth set), do 
not correct for multiple hypothesis testing. To correct for multiple hypothesis testing, two methods can be applied: 
the Bonferroni correction [26] and a less conservative method proposed by Benjamini and Hochberg [27]. We 
have computed the Bonferroni correction, the FDR by Benjamini and Hochberg, and q-values (software from 
[25]) for MSpresso and primary identification scores, using a shuffled decoy database (Section 2.6, Table S6). 
The Bonferroni correction is usually very conservative, especially for large-scale datasets in genomics and 
proteomics [25] and does not result in any protein identifications using our reference datasets (not shown). We 
were able to compute lists of significant proteins using the latter two measures (see Table S6). Analysis and 
comparison of these measures is part of ongoing work.  
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A final note on the Bayesian viewpoint: by definition, the MSpresso score is the posterior probability of 
protein presence given evidence of protein observation in different systems biology experiments (MS/MS and 
mRNA). As suggested by Kall et al. [24], scores that are also posterior probabilities can be used to directly 
estimate a false discovery rate, since posterior probability s = P(true identification | data) = 1-P(false identification 
| data) = 1-FDRs.  Note that fdrs is the local estimate of the global (or cumulative) False Discovery Rate FDR 
defined above which is defined for scores >=s, and so FDR may be estimated from fdrs.  

 This equivalence (above) is useful since FDR can then be computed without a ground truth set. Computation 
of an FDR estimate in this manner requires that reported protein identification score is a ‘true probability’, i.e. a 
good estimate of the ‘real’ posterior probability of protein presence given observed data. It is hard to prove that 
any score is a ‘true probability’, especially when using empirical methods of probability estimation. We refer to 
FDR computed in this manner as FDRscore. 

ProteinProphet [3] estimates False Discovery Rate in this manner (FDRscore) but since the ProteinProphet score 
is mathematically not a posterior probability, the authors have empirically shown that their score is a good 
estimate of the true posterior probability. This is shown by good correlation of the ProteinProphet probability with 
a True Discovery Rate (TDR = TP/(TP+FP)) [3] computed using a benchmark decoy database to determine true 
and false identifications. They construct a decoy database by appending human proteins to the target sample 
database (Halobacterium): identification of a human protein is considered a false identification (FP). Using this 
dataset, the identification score is a good estimate of true posterior probability, i.e. the score and the TDR 
correlate well and the a scatterplot of ProteinProphet probability and TDR lies on the diagonal [3].  

We tried to replicate this behavior using our YPD* yeast reference dataset to define true and false 
identifications. We found that the ProteinProphet score deviates from the diagonal (Figure S5A), and in fact over-
estimates the True discovery Rate (reported TDR is higher than predicted by reference set). One may argue that 
the incompleteness of the reference set is responsible for this behavior, but we also observed similar behavior 
when using shuffled decoy databases (Figures S5B, C). On the other hand, the MSpresso scores either correlate 
well with the TDR, or are a conservative estimate of it (Figure S5A-C).  

We conclude that this non-diagonal behavior of ProteinProphet may be due to the use of a different 
reference/decoy dataset than in the original work [3]. To enable fair comparison with ProteinProphet, we do not 
compute FDRscore although Figure S5B suggests that MSpresso scores could be used to compute accurate FDRs 
in this manner.  

2.6. Decoy databases 
The definition of an appropriate decoy database in MS-based proteomics is matter of ongoing research 

[23,24,28], and it is, to the best of our knowledge, still not completely resolved, especially at the level of 
computing significance of protein scores (in contrast to peptide scores). In fact, most research focuses on decoy 
databases at the peptide level. Below we discuss the methods we used to determine the null distribution: shuffled 
protein decoy databases [3] and control databases. We tested the yeast data using these two decoys, also trying 
different sizes of decoy databases (Figure S6). We summarize our results in Table S6. 

2.6.1 Assessing the performance of a protein identification scheme on a decoy database 
We assessed how well a particular scoring scheme (here ProteinProphet [3]) performs on a given decoy 

database. We perform this analysis to be able to choose the best decoy database for MSpresso analysis. We assess 
performance of a scoring scheme on a decoy database by examining how well the scoring scheme is able to 
distinguish between true (‘target’) and null (‘decoy’) hits, i.e. how well-separated the respective score 
distributions are (Figure S6). Using this criterion, a database of yeast sequences and 20-times (20x) its size of 
shuffled sequences performed the best. However, for practical reasons (database size, computation time) we used 
the decoy database with 5-times (5x) as many shuffled as ‘target’ sequences. Note that some hits to the target 
proteins may be random hits [29]; we partially correct for this phenomenon by labeling all target proteins with 
only a single peptide hit (single spectral count) as decoy proteins. Proteins with multiple detected peptides are 
more likely to be correct identifications [3]. 

2.6.2 Generating MSpresso scores for decoy proteins 
We now describe how to generate MSpresso scores for shuffled decoy proteins. Since both decoy and target 

proteins have MS/MS identification scores (S), P(K|S) can be estimated as usual using a logistic regression 
classifier, setting K=0 for a decoy protein and K=1 for a target protein. P(K|M) for target proteins can be 
estimated as described in the main paper. However, since decoy proteins do not have mRNA abundances, we 
must define P(K|M) distributions differently for decoys. We tried different distributions: random uniform (rand), 
same as the target P(K|M) distribution (target), randomly sampled from the target P(K|M) distribution (rand-
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target), constant at the minimum of the target P(K|M) distribution (min-target), and (rand-target-neg): randomly 
sampled from the P(K|M) distribution of the proteins absent from the MS-based yeast reference set (YP4GTE2, 
Table S2). We obtain moderate boosting at 5%FPR of protein identifications (7-14%) for all approaches except 
for RAND-UNIF, shown in Table S6. Best results are achieved using RAND-TARGET-NEG with 6 to 7% more 
proteins at 5% FPR and 18% more proteins at 5% FDR. Much larger gains are observed at different error 
estimates like 5%FDR_BH (computed using the method of Benjamini and Hochberg [27]), q-value (17-37%) and 
5% FDR (computed as FP/(TP+FP) where FP is the number of shuffled protein identifications). 

Table S6. MSpresso predictions using shuffled decoy sequences 

A. 5x shuffled sequences 
 P(K|M) for decoy proteins 
 rand-target min-target rand-target-neg rand-uniform target 
AUC 
PP 0.93 
MSpresso 0.96 0.98 0.97 0.93 0.96 
% Increase 3.2 5.4 4.3 < 0 3.2 
5%FDR_BH (Benjamini-Hochberg) 
PP 144 
MSpresso 244 290 255 178 240 
% Increase 69.4 101.3 72.3 23.6 66.7 
5% qvalue (Storey) 
PP 212 
MSpresso 249 290 264 208 247 
% Increase 17.4 36.7 24.5 < 0 16.5 
5% FPR 
PP 281 
MSpresso 300 320 300 270 296 
% Increase 6.7 13.7 6.8 < 0 5.3 
5% FDR 
PP 227 
MSpresso 251 293 269 190 248 
% Increase 10.6 29.1 18.5 < 0 9.3 
 

B. 20x shuffled sequences 
 P(K|M) for decoy proteins 
 rand-target min-target rand-target-neg rand-uniform target 
AUC 
PP 0.93 
MSpresso 0.99 1 0.99 0.99 0.99 
% Increase 2.1 3.1 2.1 2.1 2.1 
5%FDR_BH (Benjamini-Hochberg) 
PP 187 
MSpresso 233 240 235 208 223 
% Increase 24.6 28.3 25.7 11.2 19.3 
5% qvalue (Storey) 
PP 203 
MSpresso 223 240 235 210 223 
% Increase 9.9 18.2 15.8 3.4 9.9 
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5% FPR 
PP 250 
MSpresso 264 269 265 258 265 
% Increase 5.6 7.6 6.0 3.2 6.0 
5% FDR 
PP 203 
MSpresso 229 243 240 212 227 
% Increase 12.8 19.7 18.2 4.4 11.8 

3. Additional results for yeast grown in rich medium (YPD, LCQ)  
An enlarged version of Figure 2A (main text) is shown in Figure S7A to illustrate that MSpresso outperforms 

primary identifications especially at low false positive rates.  Figure S7B illustrates the overlap of MSpresso 
identifications with primary protein identifications and the two reference datasets. The FPR (false positive rate) is 
determined based on the protein reference dataset and set on 5% for both datasets. There is significant overlap 
between the three different sets (P-value<0.001, hypergeometric distribution). 

3.1. Analysis including membrane proteins 
The results in the main paper were produced excluding membrane proteins since the yeast cellular lysate was 

biased against membrane proteins. We observe a similar trend in results when membrane proteins are included 
(Table S7), increasing the number of identified proteins at 5%FPR by 44%. ROC plots are shown in Figure S7C.  

Table S7. Results of MSpresso experiments including membrane proteins  
 No. proteins         

(5% FPR) AUC 

ProteinProphet 241 0.74 
MSpresso  347 0.88 
% Increase 44 19 

 

3.2. Analysis using a non-MS based reference set 
The results in the main text use an MS-based reference set (YP4GTE2, Table S2). Here we present results of 

training MSpresso (‘self’ model) on the non-MS based reference set (YP3) and evaluating on the union of MS- 
and non-MS based sets (YP8, Table S2). There is a 66% increase in the number of reported proteins at 5%FPR, 
and an 8% AUC increase. ROC plot: Figure S7D. 

3.3. Analysis on OrbiTrap 
 Figure S7D is a ROC plot for MSpresso analysis (‘self’ model) on yeast grown in rich medium, analyzed on 

an OrbiTrap. The number of proteins identified at 5%FPR and the AUC were given in Table 1, main text (Yeast-
YPD-ORBI) 

3.4. Proteins predicted by MSpresso but not by ProteinProphet (“new” predictions) 

Table S8. ‘New’ proteins predicted by MSpresso but not by ProteinProphet (5% FPR). 
The proteins correspond to those listed in Figure 2C (main text).  
YKL127W YLR167W YEL051W YML063W YER003C YDR399W YFL045C 
YCL011C YGR034W YPL225W YML022W YDR188W YLR276C YFL022C 
YBR177C YLR448W YER025W YBR286W YPR035W YEL009C YJL177W 
YLR179C YGR285C YCL009C YPL145C YMR315W YNL287W YHR068W 
YGR008C YPL037C YHR027C YDR071C YCL043C YOR157C YKL054C 
YDR394W YGR209C YMR303C YGR159C YDR258C YGL173C YJR121W 
YLR325C YJL130C YDR091C YGR037C YDL171C YMR120C YJL014W 
YBL085W YKL117W YER155C YER136W YEL032W YMR318C YCL035C 
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YDL058W YMR083W YNL045W YJR148W YDR212W YMR165C YDL147W 
YNL241C YPR033C YDL144C YDR129C YDR047W YML061C YDR101C 
YHR165C YKR057W YNR050C YGL030W YBL024W YMR074C YDR190C 
YBR115C YAR015W YMR251W YNL244C YOR234C YOL061W YOR187W 
YPR036W YNL007C YPL093W YBL039C YJL026W YPL091W YBR158W 
YCL030C YOR375C YJL140W YOR323C YPR004C YGR257C YOR007C 
YPL028W YOR261C YOR020C YOR168W YDR172W   
YBR088C YBL002W YNL135C YGL148W YDL040C   

 

3.5.  Proteins predicted by ProteinProphet but not by MSpresso (“negative boosting”) 
Some proteins were identified by the original identification software at probability cutoff corresponding to 5% 

FPR, but fell below the threshold of MSpresso. We call this phenomenon ‘negative boosting’ since the protein 
scores are reduced below their original values, based on low mRNA abundance (see main text).  

Table S9. Proteins predicted by ProteinProphet but not by MSpresso (5% FPR) 
The proteins correspond to those listed in Figure 2C (main text).  
YBR208C YPL070W YIL125W YPL042C YDL223C 
YLR182W YGL062W YEL021W YFR016C YJL187C 
YGR255C YJL209W YLR430W YIL159W YPL151C 

 

4. Additional results for other experiments 
We applied MSpresso to a number of experimental datasets (described in Table S1). Table 1 in the main text 

presented MSpresso results on these datasets using the ‘self’ model. First, we present the corresponding ROC 
plots in Figure S8, A-D.  

Next, we present results on all datasets using the ‘reuse’ model in Table S10. The reuse model is applicable 
when good quality training reference data may not be available to train the MSpresso model. In the reuse models, 
we apply the SCALE-UP model (described in the main text) to determine the P(K|M) distribution, where M is 
now the test-set mRNA. Unless otherwise specified, the P(K|S) term is estimated by applying a logistic regression 
classifier learnt on good quality reference data to the test-set primary protein identification score S. The protein 
reference set for each experiment (Tables S2-S5) is used to define true and false hits when computing ROC 
curves (‘reuse’ model ROC plots not shown) and when computing the 5%FPR cutoff (Table S10).  

The reuse models are able to achieve an increase in reported proteins by 16 to 44%, as shown in Table S10.  
This is a considerable improvement, although not as much as reported for the ‘self’ models (Table 1, main text), 
which are trained on high-quality, experiment specific data. As expected, the best ‘boosting’ results were achieved 
with ‘self’ models, i.e. when good experiment-specific training data was available. Lastly, if no training data was 
available, re-use of the yeast model still leads to decent increases in protein identifications (Table S10, 16% in E. 
coli).  

4.1. Yeast grown in minimal medium, analyzed on LCQ (Yeast-YMD_LCQ) 
The P(K|M) SCALE-UP model was trained on mRNA and protein reference data from yeast grown in rich 
medium. Reference set used for evaluation: YMD3, Table S3.  

4.2. E. coli grown in minimal medium, analyzed on OrbiTrap (Ecoli_ORBI) 
The P(K|M) SCALE-UP model was trained on mRNA and protein reference data from yeast grown in rich 
medium. Reference set used for evaluation: ECOLI-3, Table S4.  

4.3. Human data, analyzed on LCQ (HUMAN_DaoyWT_LCQ) 
The P(K|M) SCALE-UP model was derived from human mRNA data, using a reference set derived from codon 
bias index values for human protein sequences – all proteins with codon bias indices (CBI) in the top two-thirds 
of CBI values were considered ‘present’ (K=1). P(K|S) was estimated differently from other datasets, it was set to 
the ProteinProphet probability S. Reference set used for evaluation: HUMAN-10, Table S5. 
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4.4. Human data, analyzed on OrbiTrap (HUMAN_DaoyWY_ORBI) 
P(K|M) and P(K|S) determined as for HUMAN_LCQ. Reference set used for evaluation: HUMAN-9, Table S5. 

 

Table S10. MSpresso results for ‘reuse’ models 
In all models the model for P(K|M) was reused unless denoted as ‘self’. LCQ – collected on DecaXP+ LCQ; ORBI 
– collected on LTQ-OrbiTrap; Test set - LC-MS/MS dataset which was MSpresso-processed; Reference set – 
Protein reference dataset used for evaluation; inj – injection (technical replicate); AUC – area under the curve; PP 
– ProteinProphet (primary identification); MSp – MSpresso; * no proteins at 5%FPR, so numbers are derived from 
linear interpolation on ROC curve 

Experiment Test set Reference set AUC Num. proteins at 5% FPR 
   PP MSp % increase PP MSp % increase  

Yeast-YPD-ORBI ORBI-8inj Yp4gte2 0.84 0.89 6 428* 618 44 
Yeast-YMD-LCQ LCQ-6inj YMD-3 0.73 0.83 14 229 277 21 
E.coli-ORBI ORBI-3inj ECOLI-3 0.69 0.8 16 63* 75* 20 
Human-DaoyWT-LCQ LCQ-6inj HUMAN-10 0.71 0.74 4 96 111 16 
Human-DaoyWT-ORBI ORBI-1inj HUMAN-9 0.79 0.79 0 105 104 0 
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Figure S1. Estimating P(K) 

MS: 
1498 
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3443 

mRNA: 
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Non-MS ∩ mRNA:3203  

1286 
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1417 

A. Excluding membrane proteins  

B. Including membrane proteins  

Legend: 
MS  MS-based reference set 
Non-MS  Non-MS-based reference set 
mRNA  mRNA dataset 

(A)  Of a total of 4962 yeast proteins without membrane helices, 3443 proteins (69%) 
are observed in the non-MS-based protein reference set, 1498 (30%) in the MS-
based reference set. Both estimates are likely conservative given that the fraction of 
expressed mRNAs is even larger than 2/3 (4165 of 4962 genes; 83%). When 
computed over only proteins with detected mRNA abundances, the estimates are 
larger: e.g., of 4165 total proteins without membrane helices that also have detected 
mRNA abundances, 77% are present in the non-MS based protein reference set 
and 34% are present in the MS-based reference set.  

(B)  Corresponding numbers including membrane proteins. 
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Figure S2. Estimating and generalizing P(K|M=m) 

A. Yeast, YMD B. E. coli 

C. Human 
D. Generalization 
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A, B, C. Experimental data describes the relationship between P(K|M) and M across different 
datasets: YMD, E.coli and Human. We plot P(K|M), the probability of protein presence given 
the corresponding measurement of mRNA certain abundance. 
D. A generalized step-model for P(K|M) based on A, B, C and Figure 1B in the main text.  
E. We use three mNRA datasets to estimate P(K|M) (Section 2.3.1, Yeast, YPD), setting M= 
average mRNA when at least two datasets have non-zero mRNA values, and zero otherwise. 
Using the average of 3 datasets allows us to overcome machine error in single datasets. The 
plot shows that the estimation is similar when using each individual dataset. 
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Figure S3. Independence of S and M given K 

B. K=0 (TN according to MS-based protein reference set)  

A. K=1 (TP according to MS-based protein reference set)  

C. Protein abundance from Western blot data 

Using the MS-based protein dataset (YP4gte2) as a reference, we grouped proteins 
according to their absence (K=0, A) or presence (K=1, B) in the reference and plotted the 
primary identification score vs. mRNA concentration of the respective protein.  The second 
plot in each panel shows the data binned to equal bin sizes. Panel C. shows the primary 
identification score vs. protein concentration measured by Western blots. 
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Figure S4. Illustration of true and false positives  

Decoy (all negatives) 
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The diagram explains the meaning of true positives, false positives, true negatives, and 
false negatives in the context of a decoy and target dataset.  Different error estimates 
can be defined based on different relationships between the four terms: TP, FP, TN, FN. 
The area underneath the curves may be normalized to 1, resulting in a measurement of 
‘density’ on the y-axis. 
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Figure S5. Protein identification score Vs. ‘true probability’ or True Discovery Rate 

(B) Decoy = shuffled 5X 

(B1) mRNA values randomly sampled 
from true (observed) values (RAND-
TARGET) 

(B2) mRNA values set to constant 
(minimum true (observed) value) (MIN-
TARGET) 

(A) Decoy= proteins absent 
from reference set (yp4gte2) 
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We ask whether the scores provided by ProteinProphet or by MSpresso are true 
probabilities, i.e. whether they are a good estimate of the True Discovery Rate (TDR). To 
test this, the score is plotted against the TDR. The closer the plot to the diagonal or the 
more parallel it is to the diagonal, the better the score in estimating the TDR. TDR at a 
score c is calculated as TP/(FP+TP), where TP and FP are computed over proteins with 
scores >= c. In these plots, the ProteinProphet (and sometimes MSpresso) scores deviate 
from the main diagonal, implying they are not perfect estimates of the computed TDR I.e. 
they are not ‘true probabilities’, This observation rules out using FDR-PP (FDR as 
estimated  in the ProteinProphet paper) as an evaluation measure for these scores, since 
FPR-PP requires that the scores be ‘true probabilities’. 
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Figure S6. Assessing the performance of ProteinProphet’s protein identification score 
on different decoy databases 
Better separated ‘target’ and ‘decoy’ distributions imply better performance of the decoy 
database. Proteins from the yeast proteome are called ‘targets’ and assumed to be ‘true’ hits. 
We try four different notions of  ‘null’ or decoy proteins (A) and different size of the decoy 
database relative to the target database (B). The target yeast proteins are from yeast grown 
in YPD, analyzed on LCQ, and the protein identification score is from ProteinProphet.  
A. Different types of decoy databases. From top to bottom the diagrams show the frequency 
distributions of the ProteinProphet scores obtained for decoy and target proteins defined i) 
the protein reference dataset YP4gte2 (Table S1); ii) shuffled yeast proteins (5x); iii) human 
proteins; and iv) the third of yeast proteins with the smallest codon bias index (CBI).  The size 
of the human decoy database (~24,000) is approximately the size of 5 concatenated shuffled 
yeast proteomes – and has a similar score separation, implying similar performance when 
used as a decoy. Decoys defined by the experimental data (YP4gte2) have less well-
separated distributions and the worst score separation is achieved by using CBI-based 
decoys implying it is not a very good decoy database. 
B. Different sizes of shuffled protein databases: 1x, 5x, 10x, and 20x (0.25x not shown).  As 
expected, score separation is best for large decoy databases (20x) and worst for small 
databases (1x). We used 5x for further analysis as it represented a good compromise 
between score separation (quality) and size (computation time).  

A. B. 
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Figure S7. ROC for MSpresso analysis of yeast YPD data 

C. Including membrane proteins 

D. Based on non-MS-based reference set E. Analyzed on LTQ-OrbiTrap 

We plot false vs.true positive rate as in Figure 2A (main text) for the region of low FPRs 
(A) and for different datasets from yeast grown in rich medium (YPD)(C-E). MSpresso 
outperforms primary protein identifications.  
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Figure S8. ROC plots for MSpresso analysis of yeast YMD, human (LCQ,ORBI) and 
E.coli data 

A. yeast, grown in minimal medium 

C. human, analyzed on LCQ D. human, analyzed on ORBI 

B. E. coli 

We plot false vs.true positive rate as in Figure 2A (main text) for different datasets from 
yeast grown in minimal medium (A), E.coli (B) and human (C, D).  In all four experiments, 
MSpresso outperforms primary protein identifications (see Table S9). 
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