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function3
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A quick search through high-throughput5

proteomics and genomics data can reveal6

information on many aspects of protein7

function, such as mutant phenotypes, protein8

interactions, mRNA expression patterns,9

transcriptional regulation, and even protein10

structure. The computational integration of11

such data is proving to be the most effective12

route to protein function.13
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As the availability of raw data about protein function21
grows continuously, investigators are scrambling to22
convert these data to knowledge. Datasets describing23
deletion mutant phenotypes, protein and mRNA24
expression profiles, genome sequences, and protein25
interactions, to name but a few, have opened several26
new routes to protein function. Each set of data,27
typically collected on as large a scale as is practical,28
tells something of the functions of many proteins. As29
a consequence, few of the current computational30
approaches for inferring protein function derive from31
first-principles models of protein function; rather,32
they represent varied approaches for ‘mining’33
functional inferences from diverse proteomics and34
functional-genomics data. The best routes to function35
involve integrating the partial functional inferences36
from many types of these data at once.37

Approaches for the integration of different types of38
data relating to protein function generally take what39
might be termed the ‘genome-down’ rather than40
‘protein-up’ approach. They exploit the principle that41
a protein’s function can be determined more easily in42
the context of the other proteins with which it works43
in the cell. Genome-down approaches systematically44
analyze the entire set of proteins encoded by a45
genome, and only focus in on specific proteins after46

completing this holistic analysis. One of the most47
compelling arguments in support of this strategy is48
that the proteins with known function act as cases to49
test the approach’s effectiveness, and the overall50
accuracy of the approach can be measured. Such51
assessments of accuracy show that these methods are52
often still a bit hit-and-miss, and there is no53
guarantee that data will exist for a particular protein.54
Despite these caveats, a tremendous amount of55
functional information has been found in this56
manner, much freely available for public57
consumption. This review discusses recent58
computational approaches for inferring protein59
function, several successful integrated approaches for60
analyzing both functional genomics and proteomics61
data, and tools for effectively navigating these62
complex datasets. A flowchart describing the use of63
these tools is provided in Fig. 1; internet links to the64
major resources available at present are listed in65
Boxes 1–3.66

Protein function from comparative genomics67
Two major trends are emerging in the use of68
genomics data to infer protein function. The first69
approach relies upon discovering the information70
about gene function that is intrinsic in genomes. This71
information can be revealed by finding contextual72
cues shared by genes that interact or perform a given73
function [1,2]. The second approach, which relies74
upon the completeness of genome sequences, is to75
match a gene with its equivalent genes in well-76
characterized model organisms. This approach allows77
the investigator to profit from the rich functional78
datasets that exist for model organisms.79

When using the first approach, several contextual80
trends have proved to be useful for finding protein81
function. These include searching for evidence of82
fusions between the gene of interest and other83
functionally related genes [3–5]; finding functionally84
linked genes because of their tendency to be ‘co-85
inherited’ [6–9]; identifying proteins that physically86
interact by looking for the conservation of their87
phylogenetic tree structures [10–12]; and88
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computationally identifying operons, either by virtue108
of their conservation across organisms [13–15] or the109
physical separation between the genes along the110
chromosome [16]. Each of these approaches produces111
a set of candidate proteins that are functionally112
linked to a protein of interest, with a score that113
indicates the confidence of the linkages.114

Comparisons of phylogenetic trees or analyses of115
the numbers of nucleotides that separate genes can116
be performed easily. The practical implementation of117
the remaining methods, however, requires the118
systematic comparison of large sets of protein119
sequences from many organisms, followed by120
statistical analysis of the many comparisons. For121
example, calculation of phylogenetic-profile-based122
linkages involves comparing the amino-acid123
sequence of each protein encoded by a genome with124
the complete protein complement of all organisms125
with sequenced genomes. From the results of these126
comparisons, profiles are constructed that indicate127
the organismal distribution of each protein’s128
homologs. Comparison of the profiles against each129
other reveals proteins with similar phylogenetic130
distributions, which are frequently functionally131
linked. In one such analysis, carried out recently on132
57 genomes, approximately 31 billion sequence133
comparisons were made during the construction of a134
database of phylogenetic profiles that could be135
searched for functionally linked genes [8]. The scale136
of such analyses means that their results must be137
analyzed statistically to minimize the inevitable false-138
positive linkages that arise. Nevertheless, over the139
past year, these approaches have begun the shift in140
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159
status from specialized research topics to publicly160
accessible research tools. Several internet servers have161
been created where these methods can be explored162
and where functional linkages for a protein of163
interest can be found, accompanied by estimates of164
the confidence in the predictions. Several such web165
servers are listed in Box 1.166

Computational genetics approaches have proven167
useful for several ‘real-world’ cases. One such case is168
the computational identification of the archaeal169
exosome, which was achieved using a combined170
analysis of gene sequence homology and gene order171
[17]. Another recent example is the discovery of172
functional displacements of thiamin biosynthesis173
genes [18]. In this study, candidates for gene174
displacements in thiamin biosynthetic pathways175
were identified using comparative genomics. Pairs of176
genes that might substitute for each other in these177
pathways were first identified by their anti-correlated178
phylogenetic distributions, the involvement of these179
genes in the biosynthetic pathway were validated180
experimentally.181

The second approach, which is poised for more182
widespread adoption, is the ‘borrowing’ of function183
from orthologs in better-characterized model184
organisms [19], such as the yeast Saccharomyces185
cerevisiae, the nematode worm Caenorhabditis elegans,186
the fly Drosophila melanogaster, and the bacterium187
Escherichia coli. Given a protein of interest, it is worth188
attempting to identify the equivalent protein in a189
model organism and then searching for available190
functional data among the rich functional genomics191
and proteomics databases available for model192
organisms. The identification of the equivalent193

194

Box 1. Servers for computationally predicting protein function

Prediction of protein function, interactions, and networks
Bioverse http://bioverse.compbio.washington.edu
In silico two hybrid http://www.pdg.cnb.uam.es/i2h
InterDom http://InterDom.lit.org.sg
Magic http://genome-www.stanford.edu/magic
Predictome http://predictome.bu.edu
ProtFun http://www.cbs.dtu.dk/services/ProtFun
ProteinFunction 

http://www.aber.ac.uk/compsci/Research/bio/ProteinFun
ction
Protein Link Explorer (PLEX) http://bioinformatics.icmb.utexas.edu/plex
STRING http://www.bork.embl-heidelberg.de/STRING

Predicting prokaryotic operons to find functionally linked proteins
Gene Neighbors http://bioinformatics.icmb.utexas.edu/operons
STRING http://www.bork.embl-heidelberg.de/STRING
TUpredictions http://www.cifn.unam.mx/moreno/pub/TUpredictions
WIT        http://wit.mcs.anl.gov/WIT2
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Figure 1. A flowchart describing the general ‘genome-down’ steps for identifying protein function computationally. Two parallel strategies exist:196
comparative genomics approaches for identifying linkages to other proteins, and mapping the protein of interest into an organism from which abundant197
functional genomics data are available and then assigning function. When using either strategy, it is often useful to examine the local network of proteins198
around the protein of interest, allowing the neighbors’ functions to clarify the central protein’s role.199

200
protein in a model organism may not be trivial — for201
example, the highest-scoring BLAST match in the202
genome may not actually be to a protein of203
equivalent function — and so one typically would204
wish to find an orthologous, rather than simply a205
homologous, protein.206

Orthologous genes, defined as homologous genes207
that are separated by speciation events [20], are208
typically more functionally equivalent than paralogs,209
defined as homologous genes separated by a210
duplication event. Thus, it can often be important to211
distinguish between these two categories of212
homologous genes. Even paralogs can give strong213
hints as to function, providing the basis for the214
usefulness of protein-domain databases, with the215
caveat that the precise functions of paralogs216
occasionally differ and may therefore mislead if relied217
upon exclusively. Identifying orthologs and paralogs218
requires the calculation of rooted phylogenetic trees,219
with outgroups, from which one can distinguish gene220
duplication events from speciation events. This221
approach is difficult to automate, and hence hard to222
scale to complete genomes, so several heuristic223
approaches have been developed that approximately224
identify orthologous genes.225

One such heuristic approach for finding orthologs226
in an imperfect, yet rapid and easy, fashion has been227
developed by Remm and colleagues [21]. The228
approach is an improvement on the notion of229
finding ‘bi-directional best hits’ (BBHs). BBHs are230
proteins from two genomes, each of which is the top-231
scoring BLAST match of the other when searched in232
the appropriate genome [14]. Remm et al.’s233
improvement, termed InParanoid, is to recognize that234
many genes have been duplicated and that the235

236
duplications blur the ability to identify orthologs.237
InParanoid therefore searches for BBHs, but then also238
identifies proteins from the two genomes that are as239
similar to the BBH proteins as the two BBH proteins240
are to each other. In this manner, two or more241
potential orthologs for a protein in the other genome242
may be identified within one organism243

With a potential ortholog in hand, one can now244
search for its associated functional information.245
Recommended functional databases are listed in Box246
2 and encompass model organism mRNA expression247
profiles, gene deletion phenotypes, protein248
subcellular localization, transcription-factor249
specificity, genetic interactions and protein250
interactions.251

Integrating functional genomics and proteomics252
data253
Data derived from DNA microarrays are one of the254
richest sources of information about protein255
function. Literally thousands of microarray datasets256
exist in the public domain, spawning an entire field257
of research in interpreting the data and distilling out258
functional information. Much effort in analyzing the259
data focuses on finding groups of genes (clusters) that260
have tended to co-express across a variety of261
experiments (reviewed by Slonim [22]).262

This approach has been useful in suggesting263
functions for several uncharacterized genes (see264
[23,24] for examples). Without additional data,265
however, the results often tend to be coarse-grained266
and uncertain. This uncertainty is primarily caused267
by the inherent ambiguity in the relationships268
between the genes’ expression patterns, which result269
in alternate clusterings of more-or-less equivalent270
quality. Furthermore, many genes may be found in a271
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272
single cluster, complicating the precise definition of273
their relationships. For these reasons, recent efforts to274
interpret these data have sought to increase the275
accuracy of the clusters. For example, Wu and276
colleagues [25] increased accuracy by testing alternate277
clustering methods and keeping track of those genes278
that consistently associated together. They then279
assigned functions to genes according to the well-280
characterized genes that they consistently clustered281
with. In this manner, Wu et al. predicted the282
involvement of five genes in rRNA processing and283
verified these predicted functions experimentally.284

By integrating microarray data with other285
functional genomics data, the quality of the286

287

288
discovered relationships [between clustered289
proteins?] has recently been improved considerably.290

291
Statistical approaches for assigning protein292

function from disparate sorts of data have been293
explored in the past (e.g. [26–29]), but Troyanskaya294
and colleagues [30] took this analysis a step further295
by having experts in the field (mostly curators of the296
Saccharomyces Genome Database) estimate the297
accuracy of the different classes of functional298
genomics data. Rather than directly comparing299
different clustering results (as in [25]), Troyanskaya300
and colleagues [30] then integrated the functional301
genomics data according to the expert-assigned302
accuracies using a probabilistic approach. On the303

Box 2. Functional genomics data for proteins of model organisms, which are useful for estimating the
functions of orthologous proteins from other systems

Prediction of orthologs
InParanoid http://inparanoid.cgb.ki.se
Clusters of Orthologs (COGs) http://www.ncbi.nlm.nih.gov/COG

mRNA expression profiles
dbEST http://www.ncbi.nlm.nih.gov/dbEST
SAGEmap http://www.ncbi.nlm.nih.gov/SAGE
Stanford Microarray Database http://genome-www5.stanford.edu/MicroArray/SMD
UniGene http://www.ncbi.nlm.nih.gov/UniGene

Protein interaction data
Bind http://www.bind.ca
BRITE http://www.genome.ad.jp/brite
Database of Interacting Proteins http://dip.doe-mbi.ucla.edu
GRID http://biodata.mshri.on.ca/grid
MIPS http://mips.gsf.de/proj/yeast/CYGD/db/index.html
PIMRider (Helicobacter pylori protein interactions) http://pim.hybrigenics.com

Regulatory network data
BIOCYC/METACYC http://biocyc.org
GeneNet http://wwwmgs.bionet.nsc.ru/mgs/systems/genenet
KEGG http://www.genome.ad.jp/kegg
Promoter Database of S. cerevisiae http://cgsigma.cshl.org/jian
RegulonDB http://www.cifn.unam.mx/Computational_Genomics/regulondb
TRANSFAC http://transfac.gbf.de/TRANSFAC
Yeast transcription factor targets http://web.wi.mit.edu/young/regulator_network

Model organism mutant phenotypes
Comprehensive yeast genome database http://mips.gsf.ed/genre/proj/yeast/index.jsp [Could you please check this

link, it's not working for me.]
FlyBase http://flybase.bio.indiana.edu
Saccharomyces Genome Database http://www.yeastgenome.org
WormBase http://www.wormbase.org
TRIPLES (yeast disruption phenotypes) http://ygac.med.yale.edu/triples/triples.htm

Protein subcellular localization and mRNA in situ hybridization data
TRIPLES (yeast protein localization) http://ygac.med.yale.edu/triples/triples.htm
Yeast green fluorescent protein (GFP) http://yeastgfp.ucsf.edu

localization database
C. elegans mRNAs http://nematode.laboratory.nig.ac.jp [Could you please check this link, it's

not working for me.]
D. melanogaster mRNAs http://www.fruitfly.org/cgi-bin/ex/insitu.pl
Xenopus laevis mRNAs     http://www.dkfz-heidelberg.de/molecular_embryology/axeldb.htm
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basis of these weighted data, genes were assigned to317
the most appropriate functional categories from the318
Gene Ontology project, with results available on the319
internet (Magic; listed in Box 1).320

A second recent improvement in clustering builds321
on the reasonable assumption that groups of co-322
expressed genes are often controlled by the same set323
of regulatory systems. Segal and colleagues [31]324
exploited this assumption and took a non-obvious325
approach to finding gene systems: they326
simultaneously searched both for sets of co-expressed327
genes and their corresponding regulatory networks.328
Doubling the search problem, which at first seems to329
add difficulty, may actually simplify the problem by330
requiring mutually consistent networks and gene331
clusters. The algorithm works as follows: initially, the332
genes are simply clustered according to their333
expression profiles. Then, a repetitive procedure334
begins in which known regulatory genes are335
assembled into simple networks of activators and336
repressors that can best explain the gene expression337
patterns within each gene cluster. After the best set of338
networks has been found, the original genes are339
redistributed among the clusters, assigning each gene340
to a cluster according to how well the cluster’s341
associated regulatory network predicts the gene’s342
expression. Then, these two processes are alternated:343
first constructing the optimal regulatory network for344
each cluster then reassigning genes among the345
clusters according to the networks. The program346
eventually converges upon sets of co-expressed genes347
and their candidate regulatory networks. Unlike348
simply clustering the genes, this approach produces349
interesting, and more important, testable hypotheses350
that potentially explain why the genes cluster as they351
do.352

Visualizing and navigating complex proteomics353
data354
The most intimidating aspect of working with355
proteomics and genomics data is often the inherent356
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359
360
361
362
363
364
365
366
367
368

369
large scale and complexity of the task. Nowhere is370
this more apparent than in attempts to unravel371
networks of proteins or genes, whose tangled sets of372
connections are complex in the extreme. To take full373
advantage of the data requires that a protein be374
viewed in context, and that at least the most relevant375
interaction partners be organized into a single376
coherent view.377

A useful technique for viewing networks, which378
was originally derived from an algorithm in379
computer sciences [32], has been to model proteins as380
an abstract objects at some location in two- or three-381
dimensional space. These objects are connected by382
springs whenever proteins are known to be linked383
together, and positioned so as to minimize the spring384
energies. It is important to realize that only the385
network connections represent real observations, and386
that the layout represents an attempt to summarize387
all of these perhaps conflicting associations.388
Therefore, the resulting distances between proteins in389
the network can be variable, and may even vary390
stochastically if the network layout is repeated.391
However, the tendency is for proteins that function392
together to be positioned close in space, whereas393
those that are not intimately linked tend to be394
further apart. In this manner, two proteins that are395
linked to the same set of other proteins will often be396
positioned adjacently, even if the two proteins are397
not themselves directly linked. This approach allows398
layouts of very complex networks, but is also famous399
for producing incomprehensibly complicated400
‘spaghetti-like’ diagrams.401

The difficulty of visualizing these complex datasets402
has led several groups to develop computer programs403
that allow us to visualize, and even interactively404
navigate, these networks more effectively. Several405
new network-visualization tools are listed in Box 3.406
Most of these new tools retain the spring-based407
layout approach, but use modifications to improve408
the visual esthetic and interpretability. Such409

Box 3. Software for visualizing complex protein networks

General tools for network visualization
Graphlet http://www.infosun.fmi.uni-passau.de/Graphlet/
Graphviz http://www.research.att.com/sw/tools/graphviz/
Pajek http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Tools customized for biological networks
BioLayout http://maine.ebi.ac.uk:8000/services/biolayout/
Cytoscape http://www.cytoscape.org/
InterViewer3 http://wilab.inha.ac.kr/protein/
Large Graph Layout (LGL) http://bioinformatics.icmb.utexas.edu/lgl
Osprey         http://biodata.mshri.on.ca/osprey
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modifications include indicating different types of410
proteins or linkages with different symbols,411
increasing the separation between major components412
of the network, allowing interactive navigation or413
manipulation of the visual field of view, and even414
collapsing proteins with more-or-less equivalent415
interactions into single objects in the network [33] to416
simplify the resulting network.417

Some of the newest visualization tools, such as418
Cytoscape and Large Graph Layout (LGL), also allow419
the overlay of other forms of functional genomics420
data onto the network. In this manner, protein and421
mRNA expression levels can be simultaneously422
viewed together with the relationships between the423
proteins, allowing an investigator a visual summary424
of the behavior of the system. Such a visualization425
can allow a much more logical analysis of both the426
expression data and the interaction data by allowing427
the investigator to see the changes in gene expression428
in the light of the regulatory and physical429
interactions between the genes. A researcher can also430
use such tools search for connected regions of the431
interaction network that show coordinated changes432
in gene expression patterns [34]. These tools tend to433
be most useful as part of a genome-down approach434
for the simple reason that a protein’s final position in435
the network map relies on maximally satisfying all of436
the relationships in which it participates. In this437
manner, the dominant trends in the protein’s438
relationships tend to be reinforced and suppress the439
less-confident or less-well-observed relationships, in440
effect providing some filtering to an otherwise very441
complex set of relationships.442

Conclusions and future outlook: is the time ripe443
for a central repository of protein function?444
The approaches discussed here provide general445
frameworks for discovering protein function by446
computationally integrating many distinct types of447
data. Many types of data exist that have yet to be448
extensively incorporated into these approaches. Such449
datasets include protein structures and metabolite450
and protein expression data. Protein structures451
provide rich information about molecular aspects of452
protein function, and it should be reasonably453
straightforward to begin to incorporate these454
functional inferences with those derived from455
functional genomics and protein interaction data.456
Little metabolite expression data exist in the public457
domain, as useful as they would be, for example, in458
more precisely characterizing knockout phenotypes.459
Similarly, protein expression data are accumulating460
rapidly in public and private laboratories, yet few of461

this data are publicly available, curtailing the462
development of algorithms for data analysis.463

We expect that protein expression data will be464
invaluable for many of the same reasons that DNA465
microarray data are useful: they provide systematic466
measurements of the major changes in the cell and467
allow direct characterization of a large fraction of468
expressed proteins. The field of functional genomics469
has benefited tremendously from publicly accessible470
genome sequence data and from centralized DNA471
microarray databases (e.g. the Stanford Microarray472
Database), and it is unfortunate that no equivalent473
exists for proteomics. No doubt the field of474
proteomics would profit greatly from an extensive475
public database of protein expression data476
contributed to by the community of proteomics477
scientists.478

Perhaps an equally pressing need is that for a479
central repository of protein function data, storing480
both experimentally determined and481
computationally predicted functions. The biological482
community has long had the luxury of community483
databases that archive primary sequence, structure484
and mRNA expression data. By contrast, the485
distillation of functional information from these data486
is scattered through a myriad of separate publications487
and web servers. Several more specialized databases,488
notably the model organism databases listed in Box 2489
and open format sequence databases such as490
SwissProt, have made admirable strides towards491
cataloging this functional data, but only a small492
fraction of computational functional analysis has493
been included. The centralization of this494
information, with uniformity of formats and access,495
would open up the work of computational biologists496
and functional genomicists to the community as a497
whole. Most importantly, this would allow the full498
weight of evidence for each function to be examined499
at once. It would seem the time is ripe for500
systematically acquired protein functions to be501
archived systematically.502
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