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In many of the model organisms used to study development,

it is becoming relatively routine to carry out global analyses of

gene function. These analyses take many forms, from microarray

analyses to the construction of physical interaction maps to

the systematic analyses of loss-of-function phenotypes.

Such large-scale datasets can be integrated to generate

complex gene networks, and we explore how these gene

networks can contribute to an understanding of developmental

pathways. In particular, we examine how combining large-scale

expression experiments and gene networks may move us

towards a molecular description of the events of development,

embodied in a succession of stage-specific subnetworks

sampled from an organism’s overall gene network.
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Introduction
The molecular analysis of development has traditionally

focussed particularly on the identification and analysis

of ‘master regulators’ — the transcription factors and

signalling pathways that control development. For

example, mis-expression of the Drosophila homeobox

gene Antennapedia can convert antennae to legs, a com-

plete switch of developmental programme [1]. The

identification of such key regulators, and their ordering

into complex hierarchies (e.g. see [2–6]) tells us much

about why development proceeds down well-described

paths and this is essential for our understanding of

any metazoan. However, such control theory analyses

do not tell us what genes these master regulators

control, nor do they attempt to describe the detailed

bulk of molecular events happening during subsequent

development.

Functional genomics techniques like microarray analysis

of gene expression and systematic mapping of physical

interactions allow us to survey more comprehensively

than ever before the precise events that occur during

many biological processes including development. In this

review, we examine how a careful and comprehensive

description of the molecular networks arising during

development can complement the control-based view.

Integrating diverse datasets creates
probabilistic gene networks
Functional genomics tools offer powerful ways to explore

biological processes. Each dataset generated is the result

of a directed experiment and suggests possible testable

hypotheses: for example, one might ask which genes are

induced following DNA damage [7,8]; those genes might

be involved in DNA repair and checkpoint control. When

many such large-scale datasets exist, rather than querying

them individually, one can begin to identify genes that

behave similarly across multiple datasets. For example,

one can cluster genes together on the basis of similarities

in expression profiles across multiple microarray experi-

ments [9,10]. The underlying assumption of integrative

biology is that genes that cluster together in this way share

biological function [11]. One can thus use this approach

either to assign function to previously uncharacterised

genes on the basis of their clustering with well-known

genes (the so-called ‘guilt by association’ method; e.g.

see [12]), or to discover new processes through the identi-

fication of highly-clustered genes of unknown mole-

cular function. One can even search for genes that co-

express and whose orthologs in another organism also co-

express — genes that meet this stringent criterion are

presumably even more likely to share biological function

[13�].

Just as there are many ways of examining gene function on

a large scale, so there are many ways to use large-scale

datasets to define links between genes that may reflect

shared function. For example, genes can be linked by

virtue of large-scale assays measuring physical interactions

between their protein products [14–20,21��,22��,23,24].

They may be linked by similarities in their mRNA expres-

sion profiles [9,13�,25,26�,27–29]. They may also be linked

by genetic interactions [30,31�], by shared subcellular

localisation [32�,33,34�], by similarities in their loss-of-

function phenotypes [35,36�,37–39], and by a host of

bioinformatics analyses (reviewed in [40–43]). Each set

of linkages is based on a particular facet of gene function,
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and thus each yields complementary sets of links between

genes. Various statistical methods can be used to integrate

these diverse datasets such that the more datasets one

integrates, the more functionally significant the gene link-

ages become [34�,44]. In these statistical frameworks, noise

cancels and signal adds, resulting in networks that improve

in confidence and coverage as new datasets are added. This

approach yields very large and complex networks of gene

linkages — for example, even networks based only on

physical interactions of Saccharomyces cerevisiae proteins

comprise >50% of all yeast genes with an average of 2–3

linkages per gene [45�].

A complex gene network, in these terms, is not a simple

physical entity. Instead, it is the complete set of stat-

istically significant links between genes that can be

identified from experimental data. Any individual link

between two genes may comprise genetic interaction

data, expression correlations, physical interactions and

so on; taken together, there is significant evidence that

the two genes are somehow functionally related.

(We discuss such ‘probabilistic gene networks’ at length

in [45�].) Examining groups of genes that are linked

functionally allows the researcher to identify the systems

and machineries that run the cell [29,46] — the ribosome,

the spliceosome, and so on — as well as identify novel

groupings of genes of unknown (but related) function

[47]. In all cases, the underlying assumption in using

these networks to describe and understand gene function

is that closely linked genes are likely to share functions.

Development as a coordinated series of
subnetworks
It is clear that what occurs in a particular cell at any one

time is different to the full gene linkages shown in such

global networks. Take a protein–protein interaction map

as perhaps the simplest example: contacts in vivo can

obviously only be made between proteins that are present

in a cell at the same time and in the same compartment.

However, no such constraints are made when construct-

ing a physical interaction map using yeast two-hybrid

data. The connections seen in a complete physical inter-

action map for yeast or fly or worm thus form a master
network, the total set of possible pairwise interactions

between proteins encoded in those genomes; the physical

interaction networks of a muscle cell, a neuron, or an

oocyte are subnetworks, subsets of this master network.

This is true for all of the global networks assembled

through the continued integration of large-scale datasets

in model organisms; in each case, integration of the

datasets results in a master network that holds all possible

gene–gene connections, whereas only a subset of these is

present in any cell or tissue at any time (Figure 1). The

relationship between the master network and the specific

Figure 1
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Protein interaction subnetworks specific to developmental stages can be derived from the master protein interaction network and microarray data.

This strategy requires a reasonably accurate protein interaction network derived from integration and filtering of large-scale experiments. Starting

with such a ‘master interaction network’, indicated by the matrix of interactions between proteins (A–G) on the top left, proteins can be excluded

based upon the corresponding genes’ lack of expression (bottom left) in different cell conditions (1–3), resulting in a set of protein subnetworks

specific to the cell conditions. Given a series of microarray experiments from differing cell types or developmental stages, one might derive a

succession of networks, capturing the evolving gene networks controlling the developmental processes.
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subnetworks is exactly analogous to that between genome

and transcriptome: one represents the total potential

genetic information, the other the subset active in the

cell of interest.

Development can thus be thought of as a highly regulated

and progressive generation of subnetworks, each corre-

sponding to a specific cell-type or cell-state from totipo-

tent to pluripotent to terminally differentiated. Each

subnetwork is not merely the genes expressed in that

cell-type, but their connections and interactions as well.

Viewing development in this global way leads immedi-

ately to two questions: what are all the subnetworks that

arise during development, and why does a particular

subnetwork arise in a particular cell at a specific time?

Here, we concentrate on the former: can we map out all

the subnetworks that arise during development and, if so,

what can this tell us?

Cell signatures: the ultimate developmental
markers
Defining cell-types during development is traditionally

done in several ways: on the basis of lineage (where did

this cell derive from and what cells does it give rise to?);

on the basis of anatomy (where is this cell, and what cells

does it contact?); and on the basis of appearance (what

does it look like and what markers does it express?) This

cellular description of development has been done most

completely for the worm Caenorhabditis elegans, where,

dating from the pioneering work of Sulston and collea-

gues [48], every cell division, migration and cell death

event is known from fertilisation through to adulthood.

Even in this completely described case, while we know

the lineage and fate of every somatic cell in the animal, we

still understand relatively little about the molecular net-

works underlying this development: how many genuinely

distinct cell types are there in the worm? What genes are

expressed in each cell type and what regulatory circuitry

defines this? What are the protein–protein interactions

occurring in each different cell-type? Effectively, we

would love to know as completely as possible every

one of the subnetworks that arises during development

and in which cells these subnetworks appear. This goal,

should we reach it, might be viewed as the complete
molecular description of the events of development, a molecular

counterpart to the complete lineage.

The simplest way to begin such a vast task is to define

where and when genes are expressed; clearly, if a gene is

not expressed in a defined cell type, then it can play no

role in that subnetwork. Such a ‘gene atlas’ therefore gives

a good first estimate of cell-type specific subnetworks, and

we illustrate a simple example of two such subnetworks in

Figure 2. This ambitious plan to map out the expression

patterns of (almost) every predicted gene is proceeding in

several organisms ranging from the simple to the complex,

from C. elegans to Ciona intestinalis to humans.

Similar in spirit to the large number of preceding SAGE

(serial analysis of gene expression) and EST (expressed

sequence tag) collections, several projects have used

DNA microarrays to map cell- and tissue-specific mRNA

expression patterns. It is hard to be comprehensive, but

a few cases will serve to make the point. For example,

79 human and 61 mouse tissues were profiled transcrip-

tionally in a gene atlas project by Hogenesch and co-

workers [49], serving to define the transcriptomes asso-

ciated with each of the tissues under normal growth

conditions. In plants, an analogous project in tree biology

involved mapping of tissue-specific transcript profiles for

different developmental stages of xylogenesis [50], fol-

lowed up with measurements of transcript dynamics in

autumn leaf senescence, observing the shift from photo-

synthesis, as chlorophyll is degraded, to alternative

mechanisms of energy generation [51]. In other examples,

the transcriptomes of hematopietic cell populations have

been mapped under resting (and in some cases stimu-

lated) conditions, showing marked expression differences

among the different cell lineages [52], and a series of C.
elegans developmental stages and mutants have been

profiled transcriptionally to identify stage-specific gene

expression (e.g. see [53–55]).

Beyond microarrays, high-throughput in situ hybridisation

projects, often relying on imaging at the single cell level,

are defining organism-wide gene expression patterns, and

have made strong progress in mapping spatial expression

patterns for thousands of genes in mouse [56], Xenopus
[57], and fly embryos [58]. In principle, provided the cell

types in these images can be identified unambiguously,

these experiments should also provide tissue- and cell-

type specific expression atlases, to be used in much the

same manner we describe above.

From cell signatures to developmental
mechanisms
One might be tempted to think that an attempt to define

as completely as possible all the subnetworks that arise in

development is little more than a cataloguing exercise. It

is far more than that, however, offering not just comple-

tion but also great mechanistic insight.

Most obviously, identifying all the genes specifically

expressed in a certain cell allows one to compare their

putative promoters/enhancers and search for cis-regula-

tory elements that define that expression pattern. For

example, Gaudet et al. used arrays to compare gene

expression between a worm entirely lacking a pharynx

and worms with excess pharangeal tissue [59]. Exam-

ination of the upstream sequences of genes that were

under-expressed in the mutant lacking a pharynx iden-

tified binding sites for the transcription factor PHA-4.

PHA-4 is required for development of the pharynx and

the binding sites are necessary and sufficient for phar-

yngeal expression. Similarly, from a series of microarray
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experiments spanning the D. melanogaster lifecycle,

genes of terminally differentiated muscle were identi-

fied, 65% of which contained binding sites for the

MADS box transcription factor dMef2 [60�]. It is these

transcriptional elements that ultimately form one of the

key interfaces between the regulatory circuitry of sig-

nalling pathways and transcriptional networks and the

‘business end’ of gene expression that defines a cell-

type. Expression data like these, combined perhaps with

either ChIP–chip (ChIP measured using DNA micro-

arrays) or comparative genomics analyses is likely to

greatly increase our understanding of what changes

occur during differentiation of specific tissues, and also

of how the complex interplay between transcriptional

regulators at individual promoters brings about these

effects.

Perhaps less obviously, one may be also able to use these

catalogues of gene expression as sensitive tools for the

interpretation of experimental data. In the same way that

a specific marker can be used to define a cell-type (e.g. the

use of cell surface markers to classify cells of the immune

system), these subnetworks can thus serve as more com-

prehensive ‘signatures’ of individual cell-types or cell

states. If we knew all the normal subnetworks that arise

during development, perhaps we could rapidly analyse a

perturbed network (e.g. in a mutant animal, or following a

drug treatment) in terms of expansions and removals of

subnetworks; one might thus infer the effect of the

perturbation, in effect deconvoluting the network into

its component parts, much as has been done for expres-

sion data [61].

More immediately, we can perturb development in a

targeted way using a series of mutants in specific path-

ways and catalogue the effect of each mutation on the

networks. The most immediately tractable way to do this

is through array analysis of gene-expression changes. An

example of this strategy is the mapping of fly-eye-specific

gene expression from microarray profiles of eyes absent
mutants [60�]. Extending this approach to a set of addi-

tional mutants would create a catalogue of perturbed

networks that can serve as a reference set with which

to analyse the genes of unknown function. For example,

repression of the ras–raf–MAPK pathway should have a

diagnostic effect on the networks that differs from per-

turbations in TGF-b signalling. One can then place genes

of unknown function into known pathways by comparing

Figure 2
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An example of developmental stage-specific subnetworks in C. elegans. On the left, we show a limited portion of a ‘master’ protein interaction network
in C. elegans (derived in [45�] by ‘transporting’ a protein interaction network of S. cerevisiae genes into C. elegans by mapping each

yeast gene in the network to its worm counterpart). In the network shown, each node is a worm gene (or in some cases several worm paralogs),

and each link between genes is hypothetical, based uniquely on links between yeast genes, but hypothesised to exist in worm. The two subnetworks

on the right include only those genes (and their direct interaction partners) that are upregulated in L1 worms relative to Dauer worms (labelled ‘L1’),

or upregulated in Dauer worms, relative to L1 worms (labelled ‘Dauer’) [55]. This version of the master network is quite incomplete, resulting in

incomplete subnetworks, highlighting the importance of an accurate master network in this strategy.
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the effect of mutating the unknown gene with the diag-

nostic changes observed previously.

In S. cerevisiae, this approach has proved hugely suc-

cessful. Hughes et al. profiled the expression of all

yeast genes in a series of �300 deletion mutants [62].

Clustering these data enabled the authors to identify the

putative functions of several previously uncharacterised

genes. More impressively, they also were able to deduce

the mechanism of action of an antifungal drug through

examining the effect of the drug on gene expression and

comparing that to the previously compiled compendium

of gene-expression profiles. One can easily imagine being

able to do a similar (albeit more complex) analysis in

model organisms or mammalian cell lines by examining

the effect of either mutant alleles or RNAi on gene

expression and assembling a similar compendium of

gene-expression profiles. Such a compendium would be

an excellent tool both for the potential identification of

drug-action mechanisms and also for the functional char-

acterisation of unknown genes.

It is not only expression profiles that can be gathered in

this way. Synthetic Genetic Array analysis has recently

proved very successful in S. cerevisiae at defining clusters

of genes with related molecular functions [30,31�], and

several groups have begun to map out systematically the

synthetic lethal interactions between yeast genes. By

comparing sets of synthetic lethals with synthetic phe-

notypes derived from deletion mutants upon drug addi-

tion, Parsons and co-workers were able to identify

functions for unknown genes and suggest mechanisms

of drug action [63]. Synthetic lethal analysis is being

carried out in organisms ranging from worms [64] to flies

to mammalian cell lines [65,66] and this type of approach

is likely to be increasingly useful as the sets of data grow.

Finally, it may even be possible to extract the hierarchical

organisation of ‘master regulators’ from systematically

compiled expression data. Using sophisticated iterative

clustering methods, Eran Segal and co-workers showed

that it is possible to describe genome-wide expression

data in yeast and mammals in terms of the expression

changes and the possible logical modules of transcription

factors and signalling components [67]. This approach

allowed them to construct hierarchical logical architec-

tures of these putative master regulators that are consis-

tent with the expression data and thus to discover the

regulatory circuitry underlying many processes. Analysing

as comprehensively as possible the subnetworks that arise

during development can thus give insight in many dif-

ferent ways into developmental mechanisms.

Conclusions
Describing development as a regulated progression of

complex gene networks is a realisable long-term goal in

several model organisms. Analysis of the subnetworks

that arise and disappear at different points in develop-

ment can provide an excellent complement to the more

control-theory-based views of development, and may

also clarify and illuminate some of the structures of the

regulatory networks of master regulators that control

development. We are still far from this goal at this point

in any model organism but, at least in worms and flies, we

already have a draft physical interaction map along with

an increasingly precise set of expression data and genetic

interaction data. As these datasets fill out, improving by

successive approximation with each additional experi-

ment, our view of the master network and the staged

subnetworks will come into focus and provide a new and

fuller framework for viewing development.
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