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Abstract

Rapid developments in cryo-electron microscopy have opened new avenues to probe the 

structures of protein assemblies in their near native states. Recent studies have begun applying 

single particle analysis to heterogeneous mixtures, revealing the potential of structural-omics 

approaches that combine the power of mass spectrometry and electron microscopy. Here, we 

highlight advances and challenges in sample preparation, data processing, and molecular 

modeling for handling increasingly complex mixtures. Such advances will help structural-omics 

methods extend to cellular level models of structural biology. 
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With the sequencing of thousands of genomes, large biological data sets (-omics data) 

have become pervasive in most fields of biology, including development1, 2, the classification of 

organisms3, 4, and disease5-7, among many others. Disciplines embracing -omics strategies reach 

well beyond the central dogma of biology—genomics, transcriptomics, and proteomics—into such 

areas as metabolomics8, epigenomics9, pharmacogenomics10, and interactomics11. And, as with 

these other endeavors, structural biology too has expanded to embrace -omics approaches.  

Major historic interactions of structural biology and -omics approaches have included, for 

example, electron tomography12 to provide cellular context and spatial information to complement 

proteomics and interactomics data13-15, many efforts at proteome-scale modeling of 3D structures 

and interactions16-18, and the entire field of structural genomics19-22. Structural genomics has 

employed techniques such as X-ray crystallography, NMR spectroscopy, and electron 

microscopy (EM) to solve structures of purified macromolecules in a high-throughput manner, 

targeting new protein folds and entire proteomes, which have been supplemented by molecular 

modeling and structure prediction to extend structural insights to new molecules. 

The potential of shotgun cryo-EM methods

More recently, advances in single particle cryo-electron microscopy (cryo-EM) have 

opened interesting new opportunities to connect -omics approaches and structural biology. In 

particular, cryo-EM boasts several important features: it only requires small amounts of sample, 

there is no requirement for crystal screening and optimization, and as a result, it is possible to 

capture several states of a macromolecular machine of interest. Cryo-EM is also capable of 

imaging a large field of individual macromolecular complexes in a single image. With the advent 

of direct electron detectors, ultra-stable electron microscopes, automated data collection 

strategies23 and real-time data processing24, the ‘resolution revolution’ in cryo-EM provides a 

definite route forward for increasing the throughput of structural biology25. We can anticipate that 

structures from these methods, in combination with electron tomography, will produce 

information-rich cell atlases capturing high-resolution structures of the proteome and its spatial 

context that will synergize with other –omics approaches. Here, we focus specifically on efforts to 

increase single particle cryo-EM applicability to increasingly complex and heterogenous samples, 

approaching cell lysates in complexity (as in shotgun cryo-EM), thus furthering the transformation 

of cryo-EM into a pipeline for structural-omics.
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Mass spectrometry combined with electron microscopy has been shown to be well suited 

for characterizing the architecture of protein complexes without purifying a specific target 

molecule, as demonstrated in yeast16, Desulfovibrio vulgaris26, macrophage cytoplasm27, the 

nuclear pore complex28-30, and most recently, in Plasmodium falciparum31. Protein-protein 

interactions identified through mass spectrometry in conjunction with advances in 3D structure 

determination have been used to investigate the architecture of multiple distinct protein 

complexes from mixtures such as fractionated cell lysate or even single cells32-34. Thus far, such 

studies have largely been limited to the identification of protein complexes that were easily 

recognizable (e.g. the proteasome and ribosome) or of high enough resolution to identify the 

proteins by comparing contiguous stretches of highly resolved amino acids to a reference 

proteome31. Currently, the field lacks robust and systematic computational pipelines for sorting, 

identifying, and molecular modeling of the myriad of structures that can potentially be solved from 

mixtures. The question remains: how can we break through these barriers? 

Challenges in sample preparation of heterogeneous mixtures

In fact, even before the challenges of molecular modelling of mixtures of structures 

obtained from shotgun cryo-EM methods, several challenges exist for high-throughput cryo-EM 

data collection and processing of mixtures. Sample preparation is often a major bottleneck in 

structural studies. In our hands, finding suitable freezing conditions for heterogeneous mixtures 

has proven equally difficult as a single purified sample35, with the addition of several new 

challenges. Notably, in the case of cell extracts, the presence of dominating, highly-abundant  

macromolecules can make screening difficult, especially when the size and shape of other, less 

abundant proteins are unfamiliar. Although multiple orthogonal chromatographic separations 

might help simplify mixtures, we find that sample preparation with similar size macromolecules 

improves chances of success. We have also found that different buffers in combination with 

different support substrates such as graphene oxide can produce an additional ‘purification’ step, 

ultimately determining which complexes are present on the grid. Furthermore, many 3D 

reconstructions are built from large datasets containing hundreds of thousands of particles per 

complex. Scaling this to samples containing tens to hundreds of complexes, which may be 

present in different quantities, could prove challenging simply from a data collection perspective. 

It will also be important to incorporate improved denoising and particle picking algorithms to assist 

users in picking difficult to recognize particles with multiple shapes and sizes36-38.  Despite these 

challenges, several groups have already produced multiple structures to <5 Å resolution from 

fractionated lysates31, 32. 
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While sample preparation methods are being worked on for investigating fractionated, or 

whole cell lysates, there already exist many approaches which can be used to reduce the 

complexity or target specific molecules from a mixture. Modified grid surfaces have been used for 

capturing proteins by His-tag39, 40, biotin41, and antibody affinity42. These approaches can alleviate 

the need for purification, target low abundance proteins, help with orientation bias, and can be 

readily integrated in combination with clonal sets such as the ASKA library43. Other approaches 

include using microfluidic devices which can isolate and enrich target molecules44. So far, many 

of these studies have been limited to identifying only a few symmetric molecules from a mixture 

and scaling these approaches for high-throughput has yet to be attempted. 

Advances in data processing of heterogeneous mixtures

Apart from optimizing sample preparation and data collection, new data processing 

schemes will also need to be introduced. Currently, most cryo-EM data processing software 

operates under the assumption that samples contain one dominant structure which may contain 

conformational or subunit heterogeneity. In order to adapt these software for use on highly 

heterogenous samples, we developed an auxiliary algorithm based on the principles of the 

projection-slice theorem to presort particles into homogenous subsets prior to conventional 3D 

classification and therefore avoid the need to guess the number of underlying structures present 

in the data35. A subsequent challenge will be to identify the resulting models, which can range 

from low- to high-resolution. Recently, the cryoID software package was introduced which uses a 

unique approach to sequence by structure from highly-resolved, contiguous amino acids in a 3D 

reconstruction31. However, the challenges from sample preparation suggest that it is more likely 

that these studies will produce a number of low- to mid-resolution maps, and there still remains a 

significant challenge for identifying and modelling low- to mid-resolution reconstructions from a 

mixture when their identities are not known a priori. 

Approaches for docking atomic models into low- to mid-resolution reconstructions

Due to the likelihood that lower abundance proteins in mixtures will only achieve low- to 

mid- resolution 3D reconstructions, if simply as a function of fewer particles, there will continue to 

be a need to better leverage other structural data. For this reason, an important focus remains 

improving approaches for fitting both predicted and currently available atomic structures into these 

lower resolution 3D reconstructions (Figure 1). These range from user-intensive to computation-

intensive approaches. Ideally, given the ambiguity of fitting numerous subunits into 3D 

reconstructions of unknown identity, one would prefer a quick, efficient, and computationally 
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driven method. The challenge of fitting subunits into a 3D reconstruction becomes increasingly 

difficult for multi-subunit complexes and may be additionally complicated by considerations of 

symmetry. Techniques such as MBP and Fab labeling of individual subunits have been used to 

identify specific subunits within  multi-subunit complexes45, 46. While this would prove cumbersome 

for identifying proteins in multiple complexes within a cell lysate, it may be useful for targeting a 

specific complex of interest. 

One commonly employed user-driven approach for fitting atomic structures into 3D 

reconstructions involves segmenting the maps either manually or using the Segger tool47  followed 

by rigid-body docking using Fit-in-Map into these segmented regions in UCSF Chimera48, 49. 

Scoring of this approach can be optimized using a flexible fitting tool50, 51 such as MDFF50, which 

applies forces proportional to the density gradient of the EM map, while conserving 

stereochemistry, to fit atomic structures into EM maps with resolutions as low as 15 Å. While 

these methods may work well if structural information is known a priori, any manual approach of 

rigid docking faces the possibility of getting caught in a local minimum, suffering from user bias, 

and requiring numerous user hours. Furthermore, fitting atomic models into complexes becomes 

extremely challenging when their identities are incompletely known. 

The development of integrative methods allows for a more hands-off approach, eliminating 

some of these biases52-54. These approaches combine data retrieved from various experiments 

such as yeast two-hybrid (Y2H) assays, mutagenesis, cross-linking, small angle X-ray scattering, 

electron microscopy, and X-ray crystallography to build the multi-protein model55, 56. Such 

methodologies have been successful in building models for a number of multi-protein complexes 

such as the nuclear pore complex57, 16S rRNA complexed with methyltransferase A small 

subunit56, and the BBSome58. Recently, several models predicted by integrative modeling were 

validated against their experimentally determined high-resolution structures52. The results 

showed that for all atom models the positions of subunit centers were within 5 Å of the true model, 

demonstrating the power of this approach59-64. For those structures with resolution higher than 10 

Å, secondary structure elements can not only be detected, but orientation and connectivity may 

be predicted to validate the integrative models65. While these methods are promising for building 

a single multi-protein assembly with abundant data, they are computationally intensive, and 

whether they will be equally applicable to mixtures of multiple complexes from structural-omics 

data remains untested. Methods that could simplify model building by further constraining possible 

orientations, interactions, or flexibility, may help moving forward. 
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Approaches for identifying molecular machines within complex mixtures

Due to the size and complexity of the data that describes extremely heterogeneous 

samples, corresponding mass spectrometry data becomes pivotal in identifying the proteins 

present, estimating their relative abundances, and identifying those that interact to form 

complexes in the sample. Previous studies  have shown that machine learning combined with co-

fractionation mass spectrometry can be used to detect proteins that interact to form complexes 

based on their elution profiles from multiple separation techniques66. These predicted complexes 

can be prioritized by relative abundance for modeling. Additionally, identification of previously 

solved structures could reduce the number of 3D reconstructions which need to be considered 

for subsequent modeling. Pipelines such as GEM-PRO could accomplish this by streamlining 

rapid searches of the PDB by returning protein structures given a gene or protein sequence, while 

also evaluating quality of the structures and preparing sequences for comparative modeling for 

those that do not have a known structure67. 

Recently, improved shape-based searches for protein complexes have been developed 

to better accommodate the low- to mid-resolution EM data produced from tomography68. Such 

shape search tools might prove useful to search 3D reconstructions in order to identify those 

known from prior structures. The 3D reconstructions that have been resolved and identified could 

then be used to revisit raw micrographs and pick specific particles with template matching 

approaches69.The remaining 3D models would subsequently have to be built de novo, based on, 

e.g., protein identities from mass spectrometry performed on the same samples. Importantly, 

beyond the structures of proteins already solved and available in the Protein Data Bank70, 3D 

structural models have now been computationally generated by many research groups at the 

proteome scale, a success of the Protein Structure Initiative (such as those indexed by the 

Uniprot71 database), using techniques of comparative modeling67, 72, evolutionary couplings73, or 

even ab initio74 approaches. 

Any structural modeling of native protein assemblies would most likely require prior 

knowledge of which specific protein-protein interactions were occurring75, 76, as well as the 

stoichiometries of the interacting subunits. The latter, if unknown, might be obtainable using mass 

spectrometry57, 66, 77-79. Other approaches to deciphering stoichiometry might include using volume 

constraints where volumes of different numbers of individual subunits are compared to the volume 

of a 3D reconstruction. Cross-linking mass spectrometry, where large numbers of pair-wise 

protein interactions may be identified, can help in elucidating protein interaction partners80. 
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Additionally, other pair-wise restraints may be added, such as protein docking predictions, to 

reveal new assemblies81-83. However, protein docking becomes significantly more complex with 

more than two proteins and no knowledge of interaction interfaces or order of assembly. 

Moving towards structural-omics

Given knowledge of interacting subunits and their stoichiometries, the task becomes fitting 

them into the correct map in the correct assembly. The problem resembles a jigsaw puzzle, where 

subunits must fit into the molecular envelope while respecting mutual packing interfaces. In 

general, such packing problems are known to be NP-complete84 and cannot be solved 

computationally in polynomial time. Nonetheless, additional restraints can be brought to bear to 

reduce the search complexity. For example, like a puzzle, one might determine interacting 

interfaces among the subunits, either by docking18 or more approximate approaches, ideally 

algorithms that are rapid and partner-specific. In our own work, we have developed reduced 

representations of protein surfaces to help predict complementary interaction interfaces, which 

add a measure of robustness to minor structural deformations upon binding85. Combinations of 

such packing restraints could then be employed to help pack and refine 3D protein structures to 

EM maps. In parallel, researchers have improved computational search algorithms for packing 

problems by using reduction or backtracking86, 87, and the potential exists to crowd-source the 

problem, employing the visual acuity of humans to manually fit subunits into 3D reconstructions88. 

Structural-omics stands to benefit strongly from the cryo-EM resolution revolution, in turn 

these approaches have the potential to greatly enhance our understanding of biology from a 

systems perspective. Towards this end, it is already clear that various low- to high-resolution 

complexes may be reconstructed from a cell lysate using single particle electron microscopy. The 

development of new computational tools to efficiently sort and build atomic models into these low- 

to mid-resolution reconstructions, or to solve the high-resolution structures from mixtures of 

increasing complexity, will certainly help to further advance this field and put it on a path towards 

even richer structural cell atlases.
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Figure 1: A structural-omics pipeline. A broad goal in the field is for a high-throughput, 

structural-omics approach for reconstructing complexes from a heterogeneous mixture. For 

example, whole cell lysates, organelle lysates, and heterogeneous mixtures might be analyzed 

by both cryo-EM and mass spectrometry. Cryo-EM produces multiple 3D reconstructions of 

protein complexes, while mass spectrometry provides identity information for the proteins present 

in the sample. To merge the two, even more efficient computational pipelines are needed to build 

or retrieve individual structures of proteins, organize them by interactions, assemble them into 

complexes, and match them to their 3D reconstructions obtained from a sample. Illustration by 

Angel Syrett.
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