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Increasing knowledge about the organization of proteins into complexes, systems, and
pathways has led to a flowering of theoretical approaches for exploiting this knowledge in
order to better learn the functions of proteins and their roles underlying phenotypic traits
and diseases. Much of this body of theory has been developed and tested in model
organisms, relying on their relative simplicity and genetic and biochemical tractability to
accelerate the research. In this review, we discuss several of the major approaches for
computationally integrating proteomics and genomics observations into integrated protein
networks, then applying guilt-by-association in these networks in order to identify genes
underlying traits. Recent trends in this field include a rising appreciation of the modular
network organization of proteins underlying traits or mutational phenotypes, and how to
exploit such protein modularity using computational approaches related to the internet
search algorithm PageRank. Many protein network-based predictions have recently been
experimentally confirmed in yeast, worms, plants, and mice, and several successful
approaches in model organisms have been directly translated to analyze human disease,
with notable recent applications to glioma and breast cancer prognosis.

© 2010 Elsevier B.V. All rights reserved.
Keywords:
Data integration
Function prediction
Humans
Model organisms
Phenotype prediction
Protein interaction networks
Contents
1. Introduction: predicting phenotype from proteomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2278
2. Protein networks: the basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2279
3. Propagating information through protein networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2280
4. Validated applications to model organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2283
5. Prospects for humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2285
Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2286
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2287
d Synthetic Biology, University of Texas at Austin, 2500 Speedway, Austin, TX 78712-1064, USA.
s.edu (P.I. Wang), marcotte@icmb.utexas.edu (E.M. Marcotte).

er B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jprot.2010.07.005
mailto:peggywang@mail.utexas.edu
mailto:marcotte@icmb.utexas.edu
http://dx.doi.org/10.1016/j.jprot.2010.07.005


2278 J O U R N A L O F P R O T E O M I C S 7 3 ( 2 0 1 0 ) 2 2 7 7 – 2 2 8 9
1. Introduction: predicting phenotype from
proteomics

Model organisms have proven invaluable for better under-
standing protein function and interactions, both for enabling
studies of single proteins via genetic and biochemical
tractability, as well as for enabling global surveys of thousands
of proteins. Large-scale maps of pair-wise protein interactions
[1–3], protein complexes [4–7], genetic interactions [8,9],
transcription factor–target interactions [10–13], protein local-
ization [14], and other complementary datasets have acceler-
ated the characterization of protein function on a proteome-
wide scale. The bulk of these studies have occurred in yeast
and the nematode C. elegans, but increasingly in Arabidopsis,
mouse, and fly, leading the way for applications to human cell
culture.

These rapidly accumulating large-scale biological data have
necessitated a corresponding growth in theoreticalmethods for
interpreting them. One major goal has been to translate such
knowledge of proteomic organization into models capable of
associating genetic changes with changes to measurable traits,
phenotypes, and diseases. In principle, suchmodels will help to
better interpret the rapidly growing genotype-based and
genome sequence-based data characterizing genetic variation
among individuals, whether individual humans or individuals
of another species altogether. Models exploiting proteomic
organization in order to relate genetic changes to altered traits
could, for example, guide the identification of new disease
genes, of genes underlying susceptibility to infection, and of
genes underlying major crop traits or of many other naturally
occurring traits with genetic components. Here, again, model
organismsare leading theway: over thepast fewyears, a variety
of computational methods, most exploiting large-scale proteo-
mic and genomicdatasets, havebegun to showstrongadvances
in predicting the phenotypic consequences of mutations and
successfully identify genes underlying mutational traits.
Fig. 1 – The “simplest” disease – lethality – appears tied not to the
in which that protein participates, as for the examples of yeast pr
circles and experimentally detected memberships in the same pr
set of yeast protein complexes, a systematic trend is apparent for
non-essential, with depletion for intermediate mixtures of essen
[19].
One powerful strategy has been to exploit the principle of
guilt-by-association (GBA) in protein networks (reviewed in
[15]). In this scheme, the function of a protein will more often
than not resemble the functions of those proteins with which
it interacts, or is co-expressed, or is co-localized, and so on.
Thus, knowledge of a few proteins' functions, in combination
with large-scale maps of protein–protein associations, pro-
vides substantial traction for characterizing the portions of the
proteome that are as yet poorly understood. Interestingly, this
strategy, developed initially for inferring protein function [16],
has recently proved to be a powerful approach for linking
genes to phenotypic traits and diseases.

That such an approach might work can be seen intuitively
from an examination of arguably one of the simplest “diseases”:
lethality of a yeast cell following deletion of an essential gene.
Comparisons of the components of yeast protein complexes,
measured at large-scale using mass spectrometry [4–7], with
genes known from systematic gene deletion experiments to be
essential for growth in standard laboratory medium [17], have
shown that proteins encoded by essential genes tend to co-occur
in the samephysical complexes [18,19] (Fig. 1a). There is a general
trend for proteins in the same physical complex to be encoded
eithermostlybyessential genesormostlybynon-essential genes;
complexes are systematically depleted for intermediatemixtures
of essential and non-essential genes [19] (Fig. 1b). Thus, essenti-
ality appears to be a function of the complex — the intact
molecular “machine” — rather than the individual gene. Recent
observations have further shown that essential complexes tend
tobe larger thannon-essential complexes [20,21],whichprovidea
physical explanation for a long-standing observation about gene
essentiality, that proteins encoded by essential genes tend to
have more interaction partners than non-essential ones (the
“centrality–lethality rule”) [22].

From a practical perspective, the observation that proteins
in the same physical complexes tend to be linked to similar
mutational phenotypes suggests that knowing physical com-
plexes and a subset of genes linked to a trait, one could
protein itself, but rather to the molecular complex or module
otein complexes drawn in (a). Proteins are depicted as colored
otein complexes as connecting lines. (b) Across the complete
members of the same complex to either be all essential, or all
tial and non-essential proteins. Figures are adapted from ref.
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confidently predict additional genes relevant to that trait
based upon their interaction partners. Indeed, this strategy
works reasonably well [23–25]; even better predictive perfor-
mance comes from considering broader biological pathways
and functional associations, for which this trend also appears
to hold, rather than considering physical complexes alone
[24,26]. In fact, studies have shown that highly but transiently
connected proteins (e.g. kinases) often play key roles in
complex disease [27]. Thus, a general consideration of
functional associations, whether restricted to the same
physical complex or not, appears to be a reasonable strategy
for linking genes to traits. This general strategy – exploiting
the tendency for genes underlying the same trait to encode
functionally associated proteins – has proven generally
applicable and has now been tested for a wide variety of traits
and phenotypes, and even human diseases (e.g., [23–26,28],
among others).

Just as for the initial collection of the underlying large-scale
proteomic data, model organisms have served as a productive
test-bed for these approaches. Here, we discuss several of the
major computational approaches for computationally integrat-
ing proteomics and genomics observations into integrated
protein networks, then applying these networks in order to
identify genesunderlying traits.Whilemuchworkhas gone into
identifying causal genes for traits, e.g. by association studies
(reviewed in [29]) or integrating genotypic and genomic data
(e.g., [30–32]), we primarily focus here on GBA methods,
reviewing the basic approaches, discussing recent bioinfor-
matics developments (such as a growing recognition of the
relationships between these methods and Google's web search
algorithm PageRank), and presenting recent examples of
experimental validation of these approaches at linking genes
to traits in organisms ranging fromyeast tomammals to plants.
Fig. 2 – The flow from proteomics and genomics datasets to pred
traits, phenotypes, and diseases involves several major steps, di
construction of protein networks from the large-scale datasets, wh
specific hypotheses about each protein's function and the likely
2. Protein networks: the basics

For the purposes of GBA, protein networks can consist solely of
directmeasurements of protein–protein or genetic interactions,
such as might come from a single large-scale yeast two-hybrid
or mass spectrometry assay. Typically, though, many such
measurements are first computationally integrated into a
composite network. Diverse methods exist for constructing
integrated protein networks from mixed proteomic and ge-
nomic data sets, and rapidly increasing amounts of data from
high-throughput experiments have pushed this field to be very
active. Networks are increasingly used for modeling a wide
variety of biological relationships, often requiring complex
construction strategies. Given that we wish to focus here on
the value of the resultant networks for discovering protein
function and relevance to traits, we provide only a brief high-
level overview of the different strategies of network construc-
tion (Fig. 2). Formore in-depth reviewsof this field, see [33–37]; in
some cases, step-by-step instructions are available (e.g., [26,38]).

Building a network begins with the selection of relevant
data. Generally, any datawhich suggest relationships between
pairs of proteins can be used. For example, proteins whose
corresponding mRNAs exhibit correlated expression levels
across different cellular conditions are often likely to be
functionally associated [16,39]. Similarly, protein–protein
interaction data, such as from mass spectrometry of purified
complexes or yeast two-hybrid assays, can often provide
strong support for proteins to function together. Such data
might be used directly for inferring protein function or
organization (e.g., as in Refs. [40,41]), but can also be logically
combined with other types of proteomic or genomic data.
Naturally, the motivation of the network guides the choice of
icting protein function and ultimately associating genes to
scussed in the main text. One major strategy involves the
ich then serve as theoretical frameworks for generatingmore
downstream impacts of perturbing it.

image of Fig.�2
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data used. For example, in order to study host-pathogen
interactions between humans and the H. pylori bacteria, Tyagi
et al. used predictions of transmembrane protein–protein
interactions and virulence factors [42]. In another recent twist,
Park et al. applied population-level disease patterns to study
diseaseco-morbidity [43]. Forbasic proteinnetworks, a common
strategy is to integrate a mixture of proteomics and genomics
datasets in order to infer protein–protein associations, as the
resultant networks tend to be more complete and robust
[26,28,38,44–55]. In an early example of a large-scale integrative
network, Troyanskaya et al. demonstrate how the combination
of various data sources provides for better coverage and
accuracy of predicted functional relationships [56].

The integration of multiple types of data may be approached
from many avenues, with two general frameworks used most
commonly: correlative and causal networks. In the former case,
network edges are undirected and represent functional coupling
between pairs of associated proteins. For example, such a
network might summarize evidence for pairs of proteins to
physically interact, butwouldnot indicatewhichprotein insucha
pair is upstream in the biological pathway. Methods for
constructing correlative networks include combining clustering
coefficients of data of varying weights [57] and training support
vector machines to identify co-complexed protein pairs [58]. In
naïve Bayesian networks, likelihood scores of proteins participat-
ing in the same pathway are calculated for each line of evidence
andthencombinedasaweightedsum[59], providinga (weighted)
Bayesian estimate for linked proteins to participate in the same
cellular processes. Caveats to this approach include the reliance
on current annotations (e.g., the Gene Ontology Consortium [60])
for training the networks. As annotations are often incomplete
and may serve to propagate errors, there is a danger of intro-
ducing circularity. Nonetheless, many approaches may be taken
tominimize this, such as using independent annotation test sets,
benchmarking, and weighting of data (e.g., [30,44,45,61]). Impor-
tantly,networksconstructed in thismannerhaveprovenstrongly
predictive for gene functions that lie outside of the annotated
gene set, as discussed below (e.g., in theMouseFunc contest [62]).

Alternatively, in constructing causal networks describing
causal relationships betweengenes, commonstrategies include
orderingmolecular events temporally, or by incorporating prior
knowledge as to cause andeffect (e.g., DNAmutationsmayalter
a gene's expression, but the reverse is unlikely). Zhu et al.
demonstrated this technique by integrating transcription factor
binding and expression QTL data into a probabilistic causal
network in yeast [30]. They first estimated joint probability
distributions for various models of causality between loci and
traits, then identified the most likely model which fit their
observed data. Alternatively, Bonneau et al. used time-series
DNAmicroarraymeasurements of the transcriptional response
to different environmental perturbations to construct causal
models of interactions between environmental factors and
transcription factors [63]. Though often computationally costly
in construction, causal networks are of value for simplifying
models of complex protein relationships, and in principle can
identify early events in regulatory cascades, thereby guiding the
selection of useful points of intervention for blocking such
cascades (e.g., [64]). To accelerate progress in this field, an
annual contest – the DREAM contest – is held dedicated to
testing and improving the algorithms for deriving regulatory
gene networks [65]. For a more in-depth discussion of causal
networks, see [66–68]. Both correlative and causal models
capture a wide variety of molecular interactions, ranging from
stable physical interactions to transient interactions to genetic,
non-physical interactions, all of which may be functionally
relevant to the pathway of interest.
3. Propagating information through protein
networks

Much of the real value of gene and protein networks lies in their
utility for elucidating protein function. Thus, much work has
been devoted to forming accurate predictions of protein
functions using network information and previously known
protein functions, generally by propagating annotations across
network edges. Given that all current functional annotations for
proteins are incomplete, sometimes woefully so, and that the
networks represent an attempt to objectively reconstruct
functional relationships among proteins, propagating annota-
tions across a network's edges is often useful, suggesting new
functions for under-annotated proteins. These functional
assignments are rarely unambiguous. Instead, functional
predictionmethods typically produce a score or rank represent-
ing how likely each protein is to be involved in the function. In
order to provide some intuition for the relative merits of such
approaches, we next introduce several methods and compare
their abilities to annotate proteins in correlative networks. We
focus on a small number of methods which we consider to be
distinct and interesting; more comprehensive reviews of
methods are available (e.g., [69]).

One of the most straightforward approaches to predict
protein functionviaaproteinnetwork is thatofneighborcounting
(NC) [70]. In this approach, for a particular protein function or
pathway, the proteins with the most neighbors associated with
that function are themselves deemed the most likely to share
that function. In a slightly more sophisticated variation on this
method, naïve Bayes label propagation (NB), the sum of the
network edge-weights to implicated neighbors is used, rather
than the count of interactions [26,38,46]. This latter approach
relies on network edge-weights that correspond to log likelihood
scores for proteins to participate in the same process; thus, the
sumof edge-weights to a set of genes of interest corresponds to a
naïve Bayes estimate for a gene to also belong to the gene set of
interest. NC andNB are both limited in that they only score direct
neighbors of annotated proteins. However, as discussed later,
these simple methods have made many experimentally verified
predictions.

Alternatively, “network diffusion” methods have been
developed inorder to effectively diffuse information throughout
a network, thus overcoming amajor limitation ofmethods such
as NC and NB that consider only direct associations. Here we
consider two methods which diffuse information from a single
node to directly and indirectly connected nodes over the course
of several iterations. In the first,whichwe term iterative ranking
(IR), the score for a protein to be linked to a particular function or
phenotype consists of an initial score and thenormalized scores
or weighted “votes” of each neighbor (e.g., [71]). As scores are
updated in successive iterations, information about proteins



Diffusion algorithms are common in the growing body of work
applying GBA in functional networks to predict protein function.
Generally, network-based prediction algorithms utilize two pieces
of information: f 0, an initial vector of scores representing each
protein's prior known association with a function, and W, the
network topology matrix. The initial scores are propagated
throughout the network, resulting in a set of final scores indicating
each protein's predicted association to a function. The basic
format for a diffusion algorithm is

f = αX fð Þ + 1−αð ÞY fð Þ; ð1Þ

where the vector of scores f is a combination ofX, which contains
initial scores for nodes, and Y, which contains information on the
network topology. This convex combination allows the two
components to be weighted differentially, along with some other
mathematical conveniences. In contrast, in simpler neighbor
counting and naïve Bayes methods, where a protein's score is
the count or sum of edge-weights to seeds, the two components
are combined (Table 1, Fig. 3b). Diffusion algorithms are
advantageous because they assign scores to indirectly connected
nodes. Additionally, the final scores are often readily computed.
Below we describe two diffusion methods that have been
successfully employed in various studies.

Iterative ranking (IR).This algorithmwas first developed in 1941
to model the input–output flows of economic industries by Nobel
Prize winner Wassiliy Leontief [95]. It was more recently
popularizedbyLarryPageandSergeyBrin asamethod (PageRank)
to rank internet search query results using the link topology of the
web [96]. With minor adjustments, IR has been applied to
numerous biological problems, including prioritizing functionally
associated proteins [97–100], identifying protein clusters
[101,102], identifying genes responsible for adverse drug reac-
tions [103], and improving protein identification in high-through-
put methods [71,104]. In the context of predicting protein
function, the IR score of a protein is the combination of the initial
seeds and the weighted average of IR scores of the protein's
neighbors. Since each protein's score depends on that of its
neighbors, the computation is iterative:

f t + 1 = αf 0 + 1−αð ÞUf t; ð2Þ

where f t are the scores at time t andU is the matrix of normalized
network edges. The final scores are obtained when f stabilizes to
within some threshold, or as the solution to the linear equation
(Table 1, Fig. 3c). The type of network edge normalization
performed is dependent on the application. In ranking internet

search results, where each edge is equal weight, a page which
points to a multitude of other sites, such as a home page, is likely
unspecific in topic. Thus, each edge is normalized by the total
number of outgoing edges from the node. In predicting protein
function, where network edges are usually weighted, we wish to
normalize each neighbor's contribution to a node's score. Thus,
edges here are normalized by the totalweight of incoming edges to
the node. Amore in-depth description of normalization differences
is available [105].

Gaussian smoothing (GS). This Gaussian field label propaga-
tion algorithm [72] minimizes the Euclidean distance between
(1) the initial and final scores of a protein and (2) a protein's
score and that of each of its neighbors:

f final = argminfα Σi fi−f 0i
� �2

+ 1−αð ÞΣiΣjwij fi−fj
� �2

; ð3Þ

where wij is the edge weight between protein i and its neighbor
j. This can be derived from the assumptions that the error
between initial and final scores f− f 0 is normally distributed, f
follows a multivariate normal distribution, and the covariance
matrix ∑ is equivalent to the inverse graph Laplacian matrix:

p f jf 0;W� �
∝e−

1
2 f−f 0ð Þ2 × e−

1
2 f

TΣ−1f: ð4Þ

Network edge normalization may also be useful when imple-
menting this algorithm. The authors of GS normalize each edge
by the square root of the sum of incoming edges and the square
root of the sum of outgoing edges for each node [72]. Similar
to IR, the GS score of a protein depends on an initial score and
the scores of neighboring proteins. The solution to this mini-
mization problem also reduces to a linear equation (Table 1,
Fig. 3d).

Box 1
The use of diffusion algorithms in network-based prediction of protein function.

Table 1 – Components of diffusion algorithms.
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relevant to the function of interest propagates across network
edges, “smearing” the initial functional assignments across the
network. Another diffusion method we consider is Gaussian
field label propagation, which we refer to here simply as
Gaussian smoothing (GS). In GS the minimization of two
distances is computed: the difference betweena protein's initial
and final scores and the weighted score difference between the
protein and each neighbor [72]. Box 1 and Fig. 3 present more
detailed explanations of network diffusion algorithms, and
should provide some intuition regarding their uses.

A wide variety of approaches can be imagined for propagat-
ing information across a network, and many such approaches,
often initially developed in fields outside of biology, are proving
useful for linking proteins to functions or traits. For example,

Unlabelled image
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Markov clustering (MCL) groups nodes based on simulation of
stochastic flow in the network [73]. This method was originally
applied to predict protein families based on sequence similarity.
While this method is useful for identifying clusters of function-
ally related proteins, it does not directly identify proteins of a
particular function. Instead, it identifies clusters containing
proteins of interest, but does not rank candidate genes within
each cluster. However, proteins can then be prioritized by a
variety of other approaches, such as by considering the sumof a
protein's edge-weightswithin a cluster relative to all of its edge-
weights, with larger sums indicating more relevance to the
functions captured by that cluster.

Finally, another interesting method analyzes the flow
through a network using concepts from electric circuit analysis
[74]. In this circuit-based method (CB), the protein network is
represented by an electrical circuit, where edge-weights are
analogous to conductance (1/resistance) and implicated pro-
teins are assigned as ground nodes. A current is simultaneously
applied to each protein, and the nodes emerging with the
highest current flowing through are predicted to be most likely
to be associated with the ground nodes.

Because strongly connected nodes in a functional protein
network are likely to work together in the same biological
processes, they are also likely to share similar loss-of-function
phenotypes. This can be demonstrated using correlative
functional networks available for C. elegans [26] and S. cerevisiae
[46] along with 318 RNAi phenotype gene sets available from
WormBase [75], 100 loss-of-function phenotype sets from
McGary et al. [24], and statistics of 282 morphological para-
meters for 4718 yeast gene deletion mutants from the Saccha-
romyces Cerevisiae Morphological Database (SCMD) [76]. In
order to analyze the quantitative data from SCMD, we assigned
thegenescorresponding to the40 largest andsmallest values for
each morphological feature as phenotype sets, resulting in 564
total sets. Fig. 4 illustrates the relative performance of the
various algorithms discussed above at identifying genes under-
lying traits, focusing on RNAi knockdowns in C. elegans (Fig. 4b)
and loss-of-function mutational phenotypes (Fig. 4c) and
morphological phenotypes (Fig. 4d) in yeast. A standard strategy
for evaluating such algorithms is to perform 10-fold cross-
Fig. 3 – A comparison of diffusion algorithm-based methods for p
are known to have a particular function, indicated by their color. T
each edge. (b) Naïve Bayes assigns scores to neighboring nodes. T
ranked proteins aremore darkly colored. Note that several protein
(d), all proteins are assigned to a score, but the overall rankings
validation, separating known examples into distinct training
and test sets of proteins. Using this approach, for each
phenotype, we calculated the true-positive rates (TPR) and
false-positive rates (FPR) as a function of a method's score or
rank and plotted the corresponding ROC curve. Fig. 4a provides
an example ROC curve illustrating the predictive ability of each
method for correctly identifying genes responsible for abnormal
locomotion of C. elegans following RNAi knockdown. The area
under a ROC curve (AUC) provides a convenient summary of a
method's predictive ability on that phenotype; a curve along the
diagonal lineandanAUCnear 0.5hasnopredictiveability,while
one pushed to the top left of the plot with anAUC closer to 1 has
strong predictive ability.

Theoverallperformanceofeachalgorithmatpredicting loss-
of-function phenotypes in worm and yeast is shown as
distributions of AUC values in Fig. 4b–d. NC and GBA methods
perform quite similarly, presumably because a minimum edge
weight threshold applied innetwork construction [26,46] causes
theNCmethod to return similar rankings to theNBmethod.The
MCL and CB methods, originally developed for different
purposes, did not adapt well to task of phenotype prediction.
However, MCL performance would most likely improve with
further refinements to the ranking of proteins within clusters
and to the optimization of clustering parameters. Overall, the
two diffusion methods outperform the others by a notable
margin.Someguides for effectiveusecomefromtheseanalyses:
In some cases, the diffusion methods perform poorly for small
FPR and extremely well for higher FPR. Therefore, when
choosing a predictive algorithm, the false-positive cost for the
particular experiment should be considered; NC or NBmethods
are appropriate when false-positives are costly and diffusion
methods suit cases where a more exhaustive set of predictions
is desired. Notably, the relative performance of each method
was robust to choice of organism and test set. The tests in C.
elegansyieldedhigher averageAUCsandastrongerperformance
boost from diffusion methods. These methods can also be
further adapted to predict quantitative gene-pathway based
traits (e.g., predicting quantitative yeast phenotypes with a
modifiedNBmethod [77]). Finally a general caveat ismerited:we
have observed that the various network label propagation
redicting genes associated with a function. In (a) two proteins
he strength of association between proteins is indicated along
he ranking of scores is indicated by the shade of color: higher
s have no score because they are not directly linked. In (c) and
differ.

image of Fig.�3


Fig. 4 – Results of a comparative test of the performance of various protein network-based algorithms for linking genes to
phenotypic traits. (a) Presents a ROC curve illustrating the relative predictive abilities of six algorithms for identifying the genes
associatedwith abnormal locomotion in worm following RNAi knockdown. Amethod assigns each gene in the genome a score
or rank, and this is used to calculate the true-positive rate (TP/ (TP+FN)) and false-positive rate (FP/ (FP+TN)), using 10-fold
cross-validation to assess the performance. Performing this test systematically across many distinct phenotypes allows the
relativemerits of the different algorithms to bemeasured. (b), (c), and (d) present the distributions of the areas under ROC curves
(AUCs) obtained from eachmethod for identifying the causal genes underlying 318 C. elegans RNAi phenotypes, predicted using
a worm gene network [26], and 100 yeast deletion mutant phenotypes and 564 morphological phenotypes, predicted using a
yeast gene network [46], respectively. 10, 25, 50, 75, and 90 percentiles are plotted. Dashed blue lines and corresponding blue
text denote mean AUCs.
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methods tend to perform differently for different applications,
and it is often advisable to test several to see which performs
best for a particular test of interest.
4. Validated applications to model organisms

While much work on the computational analysis of gene
networks has relied on computational tests, such as the cross-
validation employed above, the last few years have seen
increasing direct experimental validation of network-based
predictions of protein functions and involvement in pheno-
types. Here again, model organisms have proven invaluable
for enabling rapid in vivo tests of the validity of thesemethods.
In some studies, simple loss-of-function experiments have
confirmed very striking phenotypes. For example, protein
networks have successfully predicted genes whose RNAi
knockdown suppresses the loss of the retinoblastoma tumor
suppressor, validated in C. elegans (Fig. 5a) [26]. In A. thaliana,
novel regulators of drought sensitivity and lateral root
development were discovered using NB predictions (Fig. 5b)
[38]. Similarly, in E. coli, many proteins were predicted to play
roles in cell envelope biogenesis. Cells in which these proteins
were deleted exhibited differential sensitivity to peptidogly-
can assembly inhibitors [78]. In another study, Qi et al.
construct a yeast synthetic lethal genetic interaction network
in order to predict pathway memberships and genetic inter-
actions. Using a diffusion method similar to IR (described
above), they identified and confirmed 18 novel genetic

image of Fig.�4


Fig. 5 – Examples of experimentally validated network-guided predictions of genes underlying specific traits in yeast, plants, and
animals. (a) The lin-15A;B(n765) strain of C. elegans has inactivated synMuv A and synMuv B retinoblastoma tumor suppressor
pathways, causing a synthetic multivulval phenotype, in which altered cell fate specification causes normally epithelial cells to
adopt a vulval cell fate, creating ectopic vulvae that are a C. elegansmodel for tumor formation [105]. RNAi against genes that
antagonize the pathways, such as R08C7.3, suppress the phenotype, as predicted by network guilt-by-association. Figure adapted
with permission fromMacmillan Publishers Ltd: [26], 2008. (b)When theArabidopsis gene lrs1–1 is disrupted by a T-DNA insertion,
the number of lateral roots is strongly reduced (middle panel) compared to wild-type plants (left panel). Reintroduction of the
functional gene as a transgene restoreswild-typephenotype (right panel), confirming a role in root development predicted froman
Arabidopsis gene network. Figure adapted with permission fromMacmillan Publishers Ltd: [38], 2010. (c) A confirmed role for
candidate yeast protein YIR003W in mitochondrial biogenesis, predicted using computational methods from proteomics and
genomics datasets, can be seen reflected inmitochondrialmotility defects in aYIR003Wdeletion strain,measuredbydual channel
immunofluorescence ofmitochondria (red) andactin (green) (adapted fromref. [81]). (d) Amouseproteinnetwork [48] and results of
large-scale computational predictions of mouse protein function [62] suggested a role for the birth-defect relevant gene Fuz in
vesicle trafficking and biogenesis of cilia that was confirmed by knockdown in developing Xenopus embryos [89]. The top panel
shows a wild-type multiciliated cell flanked by secretory cells in X. laevis. Note the exocytotic pits indicated by the yellow
arrowheads. Fuz morphants show ciliogenesis defects as well as failure of exocytosis in secretory cells (bottom); note the apical
membrane blebs indicated by green arrowheads. Figure adapted with permission from Macmillan Publishers Ltd: [89], 2009.
(e) Using GFP-reporter constructs, C. elegans gene network-predicted tissue-specific gene expression was verified in the
hypodermis, intestine, hypodermis, neurons, and muscle of worms by Chikina et al. (adapted from Ref. [82]).
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interactions for the transcriptional cofactor Ada2 and 20 for
Esa1, a subunit of the histone acetyltransferase complex [79].

Beyond the simple schemeofmapping single genes to single
phenotypes is the goal of understanding how complex pheno-
types arise. For example, a time-dependent yeast protein
interaction network revealed the role of Cdk1 in protein
complex formation throughout the cell cycle [80]. In a separate
study employing an integrative yeast network, Hess et al.
confirmed 140 of 235 predicted mitochondrial biogenesis
genes (one such example is reprinted in Fig. 5c) [81]. In another
study, a tissue-specific functional interaction network is con-
structed in order to study tissue-specific regulation patterns in
worm. Several genes predicted to express in the hypodermis,
muscle, or neurons were confirmed using promoter-GFP con-
structs (Fig. 5e) [82]. Similarly, using a co-expression gene
network, Ghazalpour et al. predicted factors which influence
the body weight of mice [83]. The addition of non-proteomics
datasets, including genome sequence or genotype data, has
proven to often extend the scope of studies considerably.
Applying genome-wide association data to a yeast functional
network facilitated the identification of thousands of genetic
interactions between protein complexes [84], and a model of
protein dosage sensitivity [85]. Using an extensive collection of
chemical genetics datasets, Venancio et al. built a chemical-
protein complex network and identified potential interactions
between drugs and protein complexes [86].

Efforts to exploit proteomics and genomics data in order to
better annotate model organism genes recently culminated in
an international contest,MouseFunc, to annotatemousegenes
withGeneOntology (GO) annotations.Nine teams fromaround
theworld independently developedcomputationalmethods to
predict gene function from a large collection of M. musculus
data [62]. The data included protein sequence pattern annota-
tions, experimentally determined protein–protein interac-
tions, mRNA expression across multiple tissues, gene-
phenotype associations, disease associations of human
orthologs, and phylogenetic distributions of mouse genes.
Each team predicted blinded GO annotations formouse genes,
and were assessed on withheld annotations and annotations
newly identified since the start of the contest. The strengths
and weaknesses of each algorithmwere assessed, and several
methods emerged as strong performers. For example, the
Gaussian smoothing algorithm GeneMANIA (Box 1, [72])
performedwell. Performance using a computational approach
known as support vector machines, combined with GO
annotations over a Bayesian framework, was robust to the
number of genes in the test set [87]. Finally, Funckenstein,
composed of two methods combined by logistic regression,
produced high precision predictions for a wide range of GO
annotations [88].This method uses guilt-by-association in
gene networks in addition to guilt-by-profiling: exploiting the
correlation between gene function and other gene character-
istics. The ultimate result of this contest was a unified set of
predictions over all teams' approaches that averaged 41%
precision over all GO annotations. Moreover, 26% of GO terms
achieved a precision >90%. Many new predictions emerged for
5000 previously uncharacterized genes. Predictions for one of
these, the geneFuz, implicated invertebratebirthdefects,were
recently confirmed experimentally in transgenic mice and
knockdown experiments in frogs (Fig. 5d) [89].
5. Prospects for humans

Overall, the work in integration of large-scale data sets and
functional prediction in model organisms builds toward the
ultimate goal of understanding complex human traits and
phenotypes. Linding et al. approached this goal on a signaling
level and developed an in vivo phosphorylation network,
modeling kinase and phosphoprotein relationships [90]. They
identified substrates of kinases previously overlooked by
motif-based methods alone, including those of ATM (a
primary regulator of DNA damage response) and CDK1
(a driver of cell cycle progression). On a different level, genes
or proteins associated with human diseases can be predicted
through the network propagation methods discussed earlier,
and such methods are increasingly being applied to human
protein networks. For example, Ostlund et al. recently
discovered genes with abnormally high connectivity to cancer
genes and defined a novel method for ranking these new
cancer gene candidates [91]. Other studies have focused on
specific diseases and understanding certain properties of
interest. One commonly used approach is to identify network
characteristics which map to such properties. For example,
Huttenhower et al. first build small networks of biological
relationships between genes, then extract disease level
information from these models [92]. Sun et al. identified
modules of genes which they predicted to be responsible for
metastasis of oral cavity tumors [47].

In two striking recent examples, the construction of gene
interaction networks has led directly to predictions in patient
prognosis. First, Carro et al. built a transcriptional regulatory
network which models glioma cancer cell transition into an
aberrantmesenchymal phenotype [64]. Using gene expression
profiles and array comparative genomic hybridization of 76
high-grade gliomas, they were able to infer C/EBPβ and STAT3
to be transcription factors responsible for initiating and
regulating mesenchymal transformation. As a validation of
their model, they found that patients with tumors double-
positive for C/EBPβ and STAT3 were associated with worse
clinical outcome than patients with either single- or double-
negative tumors (Fig. 6a). Second, Taylor et al. studied breast
cancer patient outcome by analyzing the hub proteins in a
human protein interaction network in the context of genome-
wide expression data in 79 human tissues [93]. They identified
twoclassesof proteinnetworkhubs: intermodularhubs,which
display low correlation of co-expression with neighbors, and
intramodular hubs, which display high correlation of co-
expression with neighbors. Mutations of intermodular hubs
were more strongly associated with cancer phenotypes. Using
a cohort of breast cancer patients, they defined correlation of
co-expression signatures corresponding to good and poor
prognosis patients. The model strongly predicts patient
outcome, asdemonstrated in theKaplan–Meier survival curves
(Fig. 6b). On a broader level, patient records have recently been
integrated into models in order to build disease networks
[43,94]. These networks elucidate disease–disease relation-
ships and offer insight into disease progression and co-
morbidity, and it is reasonable to expect that such models
canbeusefully integratedwithprotein associationnetworks to
better characterize the genetic basis for human diseases.



Fig. 6 – Examples of experimentally validated network-guided predictions of genes underlying outcomes of human disease.
(a) Shows a network of transcription factors which regulate mesenchymal transformation, as predicted from a glioma-specific
regulatory network inferred fromDNAmicroarray datasets [64]. Activation of transcription factors C/EBPβ and STAT3 correlates
with aggressive gliomas and poor clinical outcome, as shown in the Kaplan–Meier plot at the right (Figure adapted with
permission from Macmillan Publishers Ltd: [64], 2010). (b) Modularity of the human protein interactome can be used as an
indicator of breast cancer prognosis. Taylor and colleagues calculated a subnetwork of hubs with either low or high correlation
of co-expression with their interaction partners, termed intermodular (red) and intramodular (blue) hubs, respectively [93].
Patients with hubs that had highly altered correlation of co-expression had a high probability of poor prognosis, as plotted at
right (Figure adapted with permission from Macmillan Publishers Ltd: [93], 2009).
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The preceding network models and network methods
reveal just small portions of the black box of interactions
underlying complex phenotypes, but models that integrate
multiple types of experimental datasets (e.g., combinations of
proteomics and gene expression data) clearly perform best.
Importantly, the wide availability of proteomics and genomics
data is significantly boosting the ability to link genes to traits.
These methods, proven initially in model organisms, are
beginning to show utility for human diseases, in spite of a still
significant lack of human proteomics data. As a result, most
models are verified using high-throughput experiments on
model organisms or cell lines, various annotation databases,
and occasionally cohort data. Given reasonable expectations
for technology developments in proteomics and genome and
transcript sequencing to improve data quality and reduce the
cost barriers to producing data, it seems safe to expect that the
proteomics efforts proven in model organisms will increas-
ingly translate into human studies, dramatically improving
our ability to link genes to human diseases and traits.
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