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Integrating Functional Genomics Data

Insuk Lee and Edward M. Marcotte

Abstract

The revolution in high throughput biology experiments producing genome-scale data has heightened 
the challenge of integrating functional genomics data. Data integration is essential for making reliable 
inferences from functional genomics data, as the datasets are neither error-free nor comprehensive. How-
ever, there are two major hurdles in data integration: heterogeneity and correlation of the data to be 
integrated. These problems can be circumvented by quantitative testing of all data in the same unified 
scoring scheme, and by using integration methods appropriate for handling correlated data. This chap-
ter describes such a functional genomics data integration method designed to estimate the “functional 
coupling” between genes, applied to the baker’s yeast Saccharomyces cerevisiae. The integrated dataset 
outperforms individual functional genomics datasets in both accuracy and coverage, leading to more 
reliable and comprehensive predictions of gene function. The approach is easily applied to multicellular 
organisms, including human.
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coupling, data correlation, data heterogeneity.

The ultimate goal of functional genomics is to identify the relation-
ships among all genes of an organism and assign their physiological 
functions. This goal is certainly ambitious, but seems somewhat 
more attainable when considering the remarkable advances in auto-
mation of molecular biology and innovations in high throughput 
analysis techniques, which are already producing enormous sets 
of functional data. Such data include micro-array analyses of gene 
expression (1, 2), protein interaction maps using yeast two-hybrid 
(3–8), affinity purification of protein complexes (9–11), synthetic 
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lethal screening (12, 13), and many others, including computational 
methods that predict gene functions using comparative genomics 
approaches. These methods are introduced in earlier chapters of 
this book: prediction of gene function by protein sequence homol-
ogy (see Chapter 6), Rosetta Stone proteins or gene fusions 
(see Chapter 7), gene neighbors (see Chapter 8), and phylogenetic 
profiling (see Chapter 9)—provide related information with rel-
atively low cost. All of these data enable the prediction of gene 
function through guilt-by-association—the prediction of a gene’s 
function from functions of associated genes. For example, if we 
observe a gene associated with other genes known to be involved 
in ribosomal biogenesis, we might infer the gene is involved in 
ribosomal biogenesis as well.

Although functional genomics data are accumulating rapidly, 
the assignment of functions to the complete genome or pro-
teome is still far from complete. One complicating factor is the 
fact that all functional analyses (both experimental and compu-
tational) contain errors and systematic bias. For example, yeast 
two-hybrid methods can detect associations between physically 
interacting genes only, whereas genetic methods only occasionally 
do (14, 15). Integration of diverse functional genomics data can 
potentially overcome both errors and systematic bias. In practice, 
data integration improves prediction of gene function by guilt-
by-association, generally resulting in stronger inferences and 
larger coverage of the genome (16–23).

Nevertheless, successfully integrating data is not trivial due 
to two major problems: heterogeneity and correlation among the 
data to be integrated. This chapter discusses an approach for inte-
grating heterogeneous and correlated functional genomics data 
for more reliable and comprehensive predictions of gene func-
tion, applying the method to genes of a unicellular eukaryotic 
organism, the yeast Saccharomyces cerevisiae.

A major hurdle in data integration is the heterogeneity of the data 
to be integrated. All data to be integrated must be assessed for 
relevance and informativeness to the biological hypothesis that 
one wants to test. In practice, this means choosing a common 
quantitative test of relevance to apply to each dataset, allowing 
comparison of the datasets by a single unified scheme. After this 
data standardization, integration becomes a much easier task. 
Note that this process is not strictly necessary—many classifiers 
do not require it—but it greatly simplifies later interpretation 
of results.

2. Methods2. Methods
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The first step in a data integration scheme is choosing the bio-
logical hypothesis we want to test. In the prediction of gene func-
tions by guilt-by-association, we are often interested in whether 
two given genes are functionally associated or not. Although we 
may be interested in a more specific type of relationship (e.g., 
protein physical interactions, genetic interactions, pathway asso-
ciations), we illustrate here a more general notion of “functional” 
associations, which implicitly includes all of these more specific 
associations (Fig. 14.1). This can be defined more precisely as 
participation in the same cellular system or pathway.

Standardization of heterogeneous data is carried out by evaluating 
them using a common benchmarking reference. Here, the refer-
ence set consists of gene pairs with verified functional associations 
under some annotation scheme (prior knowledge). The positive 
reference gene associations are generated by pairing genes that 
share at least one common annotation and the negatives by pair-
ing annotated genes that do not share any common annotation. 
The quality of the reference set—both its accuracy and extensive-
ness—is critical to successful data evaluation. It is also impor-
tant to keep in mind that the reference set must be consistent 
throughout the entire data evaluation and integration.

Several different annotations can be used to generate the ref-
erence set of functional associations. For example, reference sets 
might consist of gene pairs sharing functional annotation(s), shar-
ing pathway annotation(s), or found in the same complex(es). 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way annotations, Gene Ontology (GO), and Munich Information 
Center for Protein Sequences (MIPS) complex annotation (which 
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Fig. 14.1. Schematic for applying functional genomics data to estimate functional cou-
pling between genes. Different functional genomics data imply different types of gene 
associations with varying confidence levels. To predict functional associations, these 
diverse data are re-interpreted as providing likelihoods of functional associations, and 
then combined into a single, integrated estimate of the observed coupling between 
each pair of genes.
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is available only for Saccharomyces cerevisiae) are useful annotation 
sets to generate reference sets (see Note 1). A reference set gener-
ated from genes sharing or not sharing KEGG pathway annotation 
is used for the discussion in this chapter. We define two genes to be 
functionally associated if we observe at least one KEGG pathway 
term (or pathway code) annotating both genes.

One way to compare heterogeneous functional genomics data is 
to measure the likelihood that the pairs of genes are functionally 
associated conditioned on the data, calculated as a log-likelihood 
score:
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where P(I|D) and P(~I|D) are the frequencies of functional asso-
ciations observed in the given dataset (D) between the positive 
(I) and negative (~I) reference set gene pairs, respectively. P(I) 
and P(~I) represent the prior expectations (the total frequencies 
of all positive and negative reference set gene pairs, respectively). 
A score of zero indicates interaction partners in the data being 
tested are no more likely than random to be functionally associ-
ated; higher scores indicate a more informative dataset for identi-
fying functional relationships.

Many data come with intrinsic scoring schemes, which can eas-
ily be converted to log-likelihood scores. Figure 14.2 describes 
such a mapping for using 87 DNA micro-array datasets measuring 
mRNA expression profiles for different cell cycle time points (1). 
Genes co-expressed under similar temporal and spatial conditions 
are often functionally associated. The degree of co-expression can 
be measured as the Pearson correlation coefficient (PCC) of the 
two genes’ expression profiles. Gene pairs are sorted by the cal-
culated PCC, and then binned into equal-sized sets of gene pairs, 
starting first with the higher Pearson correlation coefficients (see 
Note 2). For each set of gene pairs in a given bin, P(I|D) and 
P(~I|D) are calculated. These probabilities correspond to a given 
degree of co-expression within this dataset. The log-likelihood 
score is calculated from these probabilities, along with P(I) and 
P(~I), the unconditional probabilities calculated from the refer-
ence gene pairs. If the PCC provides a significant correlation with 
the log-likelihood score, we then define a regression model with 
which we can map all data-intrinsic scores (PCC scores) into the 
standardized scores (log-likelihood scores) (see Note 3). In this 
way, the learned relationship between co-expression and func-
tional coupling can be extended to all un-annotated pairs. The 
datasets re-scored using log-likelihood scores will be used for 
integrating the datasets.
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If datasets to be integrated are completely independent, integra-
tion is simple: We can use a naïve Bayes approach, simply adding 
all available log-likelihood scores for a given gene pair to give the 
pair’s integrated score. However, this assumption of independence 
among datasets is often unrealistic. We often observe strong cor-
relations among functional genomics data. Integrating correlated 
datasets using formal models, such as Bayesian networks (25), 
requires defining the degree of correlation among the datasets. 
The complexity of this correlation model increases exponentially 
with the number of datasets. Therefore, defining a correlation 
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Fig. 14.2. An example of estimating functional coupling from DNA micro-array–based 
mRNA expression data. Many functionally associated genes tend to be co-expressed 
through the course of an experiment. Thus, the Pearson correlation coefficient of two 
genes’ expression vectors shows a positive correlation with their tendency to share 
pathway annotation. Here, yeast mRNA expressions patterns across the cell cycle (1) 
are compared to their participation in the same KEGG (24) pathways, plotted for all 
annotated gene pairs as a function of each pair’s Pearson correlation coefficient. The 
frequencies of gene pairs sharing pathway annotation (P(I|D) ) are calculated for bins 
of 20,000 gene pairs. In contrast, the frequencies of gene pairs not sharing pathway 
annotation (P(∼I|D) ) show no significant correlation with the correlation in expression. 
The ratio of these two frequencies, corrected by the unconditional frequencies (P(I) and 
P(∼I) ), provides the likelihood score of belonging to the same pathway for the given 
condition. In practice, we calculate the natural logarithm for the likelihood score to 
create an additive score (log-likelihood score). Using a regression model for the relation-
ship, we can score all gene pairs (not just the annotated pairs) with log-likelihood scores, 
indicating the normalized likelihood of functional coupling between genes. (Adapted 
from Lee, I., Date, S. V., et al. (2004) A probabilistic functional network of yeast genes. 
Science 306, 1555–1558.)
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model among datasets is often computationally challenging or 
impractical. If the dataset correlation is relatively weak, the naïve 
Bayes approach provides reasonable performance in integration. 
As we accumulate more and more functional genomics data to 
be integrated, however, this convenient and efficient assumption 
becomes more troublesome.

An alternative approach that is simple but still accounts for 
data correlation is a variant of naïve Bayes with one additional 
parameter accounting for the relative degree of correlation among 
datasets. In this weighted sum method, we first collect all avail-
able log-likelihood scores derived from the various datasets and 
lines of evidence, then add the scores with a rank-order deter-
mined weighting scheme. The weighted sum (WS) score for the 
functional linkage between a pair of genes is calculated as:
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where L represents the log-likelihood score for the gene associa-
tion from a single dataset, D is a free parameter roughly represent-
ing the relative degree of correlation between the various datasets, 
and i is the rank index in order of descending magnitude of the 
n log-likelihood scores for the given gene pair. The free parameter 
D ranges from 1 to + ∞, and is chosen to optimize overall perform-
ance (accuracy and coverage, see Note 4) on the benchmark. When 
D = 1, WS represents the simple sum of all log-likelihood scores 
and is equivalent to a naïve Bayesian integration. We might expect 
D to exhibit an optimal value of 1 in the case that all datasets are 
completely independent. As the optimal value of D increases, WS 
approaches the single maximum value of the set of log-likelihood 
scores, indicating that the various datasets are entirely redundant 
(i.e., no new evidence is offered by additional datasets over what is 
provided by the first set). Figure 14.3 illustrates the performance 
using different values of D in integrating datasets with different 
degrees of correlation. Datasets from similar types of functional 
genomics studies are often highly correlated. The integration of 
highly correlated DNA micro-array datasets from different studies 
(1) is illustrated in Fig. 14.3A. Here, the assumption of data inde-
pendence (D = 1) provides high scores for a limited portion of the 
proteome. However, accounting for partial data correlation (e.g., 
D = 2) provides significantly increased coverage of the proteome 
in identifying functionally associated gene pairs for a reasonable 
cost of likelihood. In fact, the assumption of complete correlation 
(D = +¥) among the different gene expression datasets provides a 
very reasonable trade-off between accuracy and coverage in iden-
tifying functionally associated gene pairs. In contrast, Fig. 14.3B 
shows the integration of 11 diverse functional genomics datasets, 
described in full in Lee et al. (21). This integration is optimal with 
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neither complete independence (D = 1) nor complete dependence 
(D = + ∞), integration with D = 1.5, accounting for intermediate 
dependence, achieves optimal performance.

Integrated data generally outperforms the individual data-
sets. A precision-recall curve (see Note 5) for the 11 individual 
datasets and the integrated set demonstrates that data integration 
improves performance of identifying functional associations in 
terms of both recall and precision (Fig. 14.4).

The gene associations arising from integrating different functional 
genomics datasets often generate new biological hypotheses. For 
example, PRP43 was initially implicated only in pre-mRNA splic-
ing (26). Interestingly, many genes involved in ribosomal bio-
genesis are strongly associated with PRP43 in an integrated gene 
network (21). Among the 5 genes most strongly associated with 
PRP43, as ranked by the log-likelihood scores of their associa-
tions, three are known to be involved in ribosomal biogenesis 
(Table 14.1). Three recent experimental studies have validated 
this association, demonstrating that PRP43 is a regulator of both 
pre-mRNA splicing and ribosomal biogenesis (27–29).

2.6. Inference of New 
Gene Function by 
Guilt-by-Association: 
A Case Study of 
PRP43
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Fig. 14.3. Effects of data correlation on data integration. Here (A) 12 different DNA micro-array datasets or (B) 11 diverse 
functional genomics datasets from Lee et al. (21) are integrated by the weighted sum method, applying different values 
of D. The quality of the integration is assessed by measuring coverage (percentage of total protein-coding genes cov-
ered by gene pairs in the data) and accuracy (cumulative log-likelihood scores measured using a reference set of KEGG 
pathway annotations), with each point indicating 2,000 gene pairs. Integration of DNA micro-array datasets with naïve 
Bayes approach (D = 1) shows high likelihood scores for the top-scoring gene functional pairs, but a rapid decrease in 
score with increasing proteome coverage. In contrast, integration assuming higher (D = 2) or complete correlation (D = 
positive infinity) provides a dramatic improvement in coverage for a reasonable cost of likelihood. For the integration of 
11 diverse functional genomics datasets, the naïve Bayes approach (D = 1) shows reasonable performance. However, 
the best performance is observed for D = 1.5. These examples illustrate that better performance in data integration is 
achieved by accounting for the appropriate degree of correlation among the datasets—similar types of datasets are 
often highly correlated, requiring high values of D, whereas more diverse types of data can be relatively independent, 
requiring low values of D or naïve Bayes for the optimal integration.
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Fig. 14.4. A comparison of the quality of gene functional associations found using 11 
diverse functional genomics datasets and an integrated dataset. The predictive power 
of 11 diverse functional genomics datasets and the integrated dataset (21) are assessed 
by a recall-precision curve (see Note 5). Measurements are carried out for bins of 
2,000 gene pairs. The integrated dataset outperforms all individual datasets, with data 
integration improving the prediction of functional associations in both accuracy and 
coverage. Assessment curves are plotted with logarithm of both recall and precision for 
visualization purpose; thus, the predictive powers are significantly different between 
co-expression and integrated dataset with linear scale. 

Table 14.1
The five genes most strongly associated with Prp43

Rank Name Cellular locationa Cellular functionb

1 ERB1 nucleolus rRNA processing

2 RRB1 nucleolus ribosome biogenesis

3 LHP1 nucleus tRNA processing

4 URA7 cytosol CTP biosynthesis, phospholipid 
biosynthesis, pyrimidine base 
biosynthesis

5 SIK1 small nucleolar 
ribonucleo
protein complex

rRNA modification, 35S pri-
mary transcript processing, 
processing of 20S pre-rRNA

aAnnotated by Gene Ontology cellular component.
bAnnotated by Gene Ontology biological process.
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 1. These annotations are hierarchically organized, and choos-
ing different levels of the annotation hierarchy may generate 
quite different evaluations for the same dataset. Generally 
speaking, top-level annotations provide extensive coverage 
but low information specificity (resolution), whereas low-
level annotations decrease coverage but increase informa-
tion specificity. Therefore, the choice of appropriate levels 
of hierarchical annotation must be considered carefully in 
order to achieve the optimal trade-off between coverage and 
specificity. KEGG pathway and GO biological process anno-
tations are available for yeast from ftp://ftp.genome.jp/pub/
kegg/pathways/sce/sce_gene_map.tab and http://www.
geneontology.org/ontology/process.ontology, respectively. 
CYGD (the comprehensive yeast genome database) functional 
categories from MIPS are available at ftp://ftpmips.gsf.
de/yeast/catalogues/complexcat/). CYGD lists yeast cel-
lular complexes and their member proteins. Similar data are 
available for many other organisms. It is striking that the 
current yeast annotation and reference sets are quite non-
overlapping (30). For example, fewer than half of the KEGG 
pathway database associations are also contained in the Gene 
Ontology (GO) annotation set. The low overlap is prima-
rily due to different data mining methods and to inclusion 
bias among the annotation sets. However, this provides the 
opportunity to generate more comprehensive reference sets 
by combination of different annotation sets.

 2. Here, an appropriate choice of bin size is important. Gen-
erally, a minimum of 100 annotated gene pairs per bin is 
recommended to obtain statistically reliable frequencies. 
Overly large bin sizes decrease the resolution of evaluation. 
Binning must start with the more significant values first. For 
Pearson correlation coefficient scores, positive values tend to 
be more meaningful than negative values. (We observe sig-
nificant signals with Pearson correlation coefficient > 0.3 in 
Fig. 14.2.) Thus, we rank gene pairs with decreasing Pearson 
correlation coefficients (starting from +1) and bin in increas-
ing increments of x pairs (x = 20,000 in Fig. 14.2).

 3. Regression models may suffer from noisy data. For micro-
array data, gene pairs with negative Pearson correlation coeffi-
cient scores are often un-correlated with log-likelihood scores 
of gene functional associations. As most of the ∼18 million 
of yeast gene pairs belong to this group of noisy data, taking 
only gene pairs with positive Pearson correlation coefficients 
generally gives an improved regression model.

3. Notes3. Notes
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 4. The ability to identify functional associations is assessed by 
measuring accuracy for a given cost of coverage. To control for 
systematic bias (the dataset may predict well for only certain 
gene groups, e.g., associations between ribosomal proteins), 
we measure the coverage of total genes as the percentage of 
all protein-coding genes represented in the dataset. Accuracy 
is defined as the cumulative log-likelihood score of the data-
set. The area under this coverage-accuracy curve line indicates 
relative performance. We select the value of D that maximizes 
the area under the coverage-accuracy curve.

 5. One formal way to evaluate data coverage and accuracy is 
by plotting a recall-precision curve. Recall (defined as the 
percentage of positive gene associations in the reference set 
correctly predicted as positive gene associations in the data-
set) provides a measure of coverage and precision (defined 
as the percentage of predicted positive gene associations 
in the dataset confirmed as true positive gene associations 
by the reference set) provides a measure of accuracy. The 
evaluation method should be able to identify any possible 
over-fitting during data integration, which occurs when the 
training process simply learns the training set, rather than 
a more generalized pattern. Over-fitting is tested using a 
dataset that is completely independent from the training 
set. The simple way of making an independent test set is to 
leave out some fraction (e.g., ∼30%) of the original train-
ing set as a separate test set. However, this reduces the size 
of the training set, thus decreasing training efficiency. An 
alternative method is randomly splitting the original train-
ing set into k subsets, then iterating training k times, using 
one subset for the testing and all others for the training. The 
average measurements from this iterative process, called 
k-fold cross-validation, provide a fairly unbiased evaluation 
with minimal loss of training power (see Chapter 15, 
Section 3.4.3 and Note 3 for more details).
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