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Dear Editor,

Gene networks provide a system-level overview of genetic or-

ganizations and enable the dissection of functional modules

underlying complex traits. Integration of diverse genomics

data based on the Bayesian statistics framework has been

successfully applied to the construction of genome-scale func-

tional networks for major crop species such as rice (Lee et al.,

2011), soybean (Kim et al., 2017), and tomato (Kim et al.,

2016), and their predictive power for gene-to-trait associations

has been demonstrated. However, such a predictive gene

network is not yet available for bread wheat, Triticum aestivum,

an important staple food crop accounting for approximately

20% of the world’s daily food consumption. Bread wheat

also serves as a model for studying polyploidy in plants.

Some of the reasons that functional genomics studies on

bread wheat have lagged behind those on other crops include

the large genome of bread wheat (�17 Gb) and its polyploidy

nature, which complicates genetic analysis. However, recent

advances in wheat research have considerably improved

genome assembly and gene models (International Wheat

Genome Sequencing Consortium, 2014). Furthermore, the

discovery and application of genome editing (Upadhyay

et al., 2013) and TILLING technologies (Uauy et al., 2009)

have enabled targeted mutagenesis in wheat protoplasts and

whole plants, setting the stage for the application of reverse

genetics approaches for functional characterization of wheat

genes.

Here, we present WheatNet, a genome-scale functional gene

network for T. aestivum and associated web server (www.

inetbio.org/wheatnet), which provides network information and

generates network-based functional hypotheses. WheatNet

was constructed by integrating 20 distinct genomics datasets

(Supplemental Table 1), including 156 000 wheat-specific

co-expression links mined from 1929 DNA microarray datasets

(Supplemental Table 2). A unique feature of WheatNet

compared with previously constructed crop functional

networks is that each network node in WheatNet represents

either a single gene or a group of genes to reduce complexity.

An allopolyploid wheat genome contains three homeologous

chromosome sets—A, B, and D—that originate from three

closely related species Triticum urartu, Aegilops speltoides,

and Aegilops tauschii, respectively (International Wheat

Genome Sequencing Consortium, 2014). Therefore, the wheat

genome contains many homologous genes between the

three ancestral chromosome sets. Because homeologs are

likely to have redundant functions, collapsing homeologs into

a single network node would facilitate the network analysis by

reducing network complexity. Unfortunately, comprehensive

definitions of wheat homeologous relationships are not yet

available. Therefore, we computationally partitioned ‘‘gene
Mo
groups’’ mimicking homeologous genes by clustering

99 386 wheat genes, resulting in 20 248 gene groups

comprising 63 401 genes, and 35 985 individual genes.

WheatNet was thus constructed using 56 233 nodes; the

final network has 20 230 nodes (13 430 gene groups and

16 800 individual genes) and 567 000 edges, integrating

20 sources of functional evidence linking pairs of genes

(Supplemental Methods). The edge information of the

integrated WheatNet and all 20 component networks are

available for download.

To assess WheatNet, we used biological process annotations

by agriGO (Du et al., 2010), which are moderately distinct

from the dataset used for network training (�38% gene pairs

by shared agriGO annotations overlap the training data) and

one of the few other large-scale wheat annotation sets avail-

able for testing. To help reduce bias, we excluded agriGO

terms that annotate more than 300 wheat genes. Next, the ac-

curacy of functional gene pairs by WheatNet or by random

chance was measured using the proportion of gene pairs

that share agriGO annotations for different coverage of the

coding genome. We observed strong performance by

WheatNet, in which a network covering approximately 20%

of all genes map functional gene pairs with about 40% accu-

racy (Supplemental Figure 1). The quality of WheatNet was

further evaluated by the degree of connectivity among genes

involved in a particular biological process. Considering that

genes for the same complex traits are more likely to be

functionally coupled, high connectivity among known genes

for a trait would support the quality of functional networks.

We tested network connectivity for a group of genes based

on two measures: (1) the number of edges among gene

members (i.e., within-group edge count) and (2) the number

of network neighbors that overlap among group members

(i.e., network neighbor overlap). We used genes for two

complex traits derived from proteomics studies: 45 genes

with differential protein expression after Blumeria graminis

f. sp. tritici infection (Mandal et al., 2014) and 17 genes with

differential protein expression under drought conditions

(Cheng et al., 2015). The significance of network connectivity

was also measured based on a null distribution from 1000

random gene sets of the same size. We found that the

connectivity among each trait’s genes was significantly

higher than by random chance (Figure 1A and 1B). We

consistently observed network communities of genes for

both traits (Figure 1C and 1D). We conclude that WheatNet

successfully predicts additional genes that are involved in a

given trait.
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Figure 1. Overview of WheatNet.
(A–D)Degree of connectivity (A) among 45 genes for response to Blumeria graminis f. sp. tritici infection and (B) among 17 genes for response to drought

stress were measured by determining the number of edges among group members (i.e., within-group edge count) or the number of network neighbors

that overlapped among group members (i.e., network neighbor overlap) by using WheatNet (red stars) or 1000 random gene sets having the same size

(black circles). Largest components of networks of (C) the genes for response to B. graminis f. sp. tritici infection and (D) those for response to drought

stress by WheatNet.

(legend continued on next page)
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The WheatNet web server provides two options for prioritizing

genes for wheat traits: (1) direct neighbors in the gene network

and (2) context-associated hubs (CAHs). In the first approach, a

user submits genes known for a trait that can guide network

searches for new candidate genes. New genes are then ranked

by the strength of evidence connecting them to the ‘‘guide

genes,’’ measured for each candidate gene as the sum of

network edge scores from that gene to the guide genes. The

result page provides the ranked list of candidates and a visualiza-

tion of the local guide gene network (Figure 1E). To provide

functional clues for candidate genes, WheatNet provides

available wheat and Arabidopsis gene annotations from the

Gene Ontology biological process (GOBP) (Supplemental

Methods).

In the second approach, users exploit gene expression data

related to a trait of interest. Gene expression profiles are one

of the most common types of genomic data, and differential

expression analysis provides many genes that are potentially

associated with given traits such as abiotic and biotic stresses.

However, many genes that are associated with stress condi-

tions are not differentially expressed. Hypothesizing that a

gene associated with many differentially expressed genes

(DEGs) in stress (i.e., CAHs) is likely to be responsible for re-

sponses to the given stress condition, we prioritized genes

by connections to the context-associated DEGs. To conduct

CAH prioritization, we first defined a subnetwork that com-

prises a hub gene and all of its network neighbors in WheatNet.

For the gene prioritization, we considered only subnetworks

with hub genes that have at least 50 network neighbors.

Assuming that DEGs are representative genes for a relevant

biological context, we prioritized hub genes based on the

enrichment of their network neighbors for the DEGs, measured

using Fisher’s exact test. The hub genes with significant

enrichment (P < 0.01) of network neighbors for the DEGs are

considered as CAHs and are presented as candidate genes

for the context-associated trait. Similar to the network direct

neighborhood search, all candidate genes are appended by

GOBP annotations for wheat genes and for Arabidopsis ortho-

logs. In addition, users can access a network view of a CAH

and its connected DEGs by clicking each candidate gene

(Figure 1F).

The WheatNet predictions by each of the network-based gene

prioritization methods were validated as follows. For the network

direct neighborhood method, we evaluated the new candidate

genes for drought stress response that were predicted by

submitting 17 genes with differential protein expression under

drought conditions (Cheng et al., 2015) as guide genes. We

hypothesized that novel candidate genes for drought response

are also likely to be expressed differentially under drought

conditions. Thus, we investigated the enrichment of candidate

drought response genes from DEGs under drought conditions.

We generated a set of 2346 DEGs under drought conditions

based on genes that showedmore than 4-fold changes in expres-
(E) Results of gene prioritization by the direct neighborhood method. The top

table. In addition, the network of guide genes and candidate genes is shown.

(F) The results of gene prioritization by the context-associated hub method. Th

table. By clicking each candidate gene, users can view a network composed

Mo
sion levels at P < 0.01 (SRP045409 of NCBI Sequence Read

Archive) (Liu et al., 2015). We found 15 drought-condition DEGs

among the top 50 candidate genes by the network direct neigh-

borhood method, which indicates more than 7-fold enrichment

over predictions by random chance (15/50 = 0.3 by WheatNet

versus 2346/56 233 = 0.042 by random chance). For the CAH

method, we evaluated the candidate genes for Fusarium grami-

nearum infection response that were predicted by submitting

837 DEGs after infection with F. graminearum (GEO: GSE54551

in NCBI Gene Expression Omnibus database) (Wojcik et al.,

2015) as user input data. We found that the top 100 candidates

by CAHs were significantly enriched for GOBP annotations

relevant to fungus infection based on Arabidopsis orthologs:

‘‘response to chitin’’ (GO: 0010200, P = 9.72 3 10�31),

‘‘regulation of plant-type hypersensitive response’’ (GO:

0010363, P = 8.20 3 10�21), ‘‘defense response to fungus’’

(GO: 0050832, P = 1.73 3 10�20), ‘‘response to fungus’’ (GO:

0009620, P = 1.03 3 10�8), and ‘‘detection of biotic stimulus’’

(GO: 0009595, P = 3.43 3 10�5). These results indicate that

WheatNet can effectively prioritize novel candidate genes for

complex traits, including those governing abiotic and biotic

stress responses, by using multiple network-based methods,

which can be easily performed by simple submission of input

data in the web server. WheatNet complements other types of

knowledge mining systems (Hassani-Pak et al., 2016) and

provides a useful resource for systems biology and predictive

genetics analysis of wheat.
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