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Dear Editor: 

Gene networks provide a system-level overview of genetic organizations and enable the 

dissection of functional modules underlying complex traits. Integration of diverse genomics 

data based on the Bayesian statistics framework has been successfully applied to the 

construction of genome-scale functional networks for major crop species such as rice (Lee et 

al., 2011), soybean (Kim et al., 2017), and tomato (Kim et al., 2016), and their predictive 

power for gene-to-trait associations has been demonstrated. However, such a predictive gene 

network is not yet available for bread wheat, Triticum aestivum, an important staple food crop 

accounting for approximately 20% of the world’s daily food consumption. Bread wheat also 

serves as a model for studying polyploidy in plants.  

Some of the reasons that functional genomics studies on bread wheat have lagged behind 

those on other crops include the large genome of bread wheat (~17 Gb) and its polyploidy 

nature, which complicates genetic analysis. However, recent advances in wheat research have 

considerably improved genome assembly and gene models (International Wheat Genome 

Sequencing, 2014). Furthermore, the discovery and application of genome editing (Upadhyay 

et al., 2013) and TILLING technologies (Uauy et al., 2009) have enabled targeted knockout 

in wheat protoplasts and whole plants. These developments have set the stage for the 

application of reverse genetics approaches for the functional characterization of wheat genes. 

Here we present WheatNet, a genome-scale functional gene network for T. aestivum and a 

companion web server (www.inetbio.org/wheatnet), which provides network information and 

generates network-based functional hypotheses. WheatNet was constructed by integrating 20 

distinct genomics datasets (Supplemental Table 1), including 156,000 wheat-specific co-



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

expression links mined from 1,929 DNA microarray datasets (Supplemental Table 2). A 

unique feature of WheatNet compared with previously constructed crop functional networks 

is that each network node in WheatNet represents either a single gene or a group of genes to 

reduce complexity. An allopolyploid wheat genome contains three homeologous chromosome 

sets―A, B, and D―that originate from three closely related species Triticum urartu, 

Aegilops speltoides, and Aegilops tauschii, respectively (International Wheat Genome 

Sequencing, 2014). Therefore, the wheat genome contains many homologous genes between 

the three ancestral chromosome sets. Because homeologs are likely to have redundant 

functions, collapsing homeologs into a single network node would facilitate the network 

analysis by reducing network complexity. Unfortunately, comprehensive definitions of wheat 

homeologous relationships are not yet available. Therefore, we computationally partitioned 

“gene groups” mimicking homeologous genes by clustering 99,386 wheat genes, resulting in 

20,248 gene groups comprising 63,401 genes, and 35,985 individual genes. WheatNet was 

thus constructed using 56,233 nodes; the final network has 20,230 nodes (13,430 gene groups 

and 16,800 individual genes) and 567,000 edges, integrating 20 sources of functional 

evidence linking pairs of genes (Supplemental Methods). The edge information of the 

integrated WheatNet and all 20 component networks are available for download.  

To assess WheatNet, we used biological process annotations by agriGO (Du et al., 2010), 

which are moderately distinct from the dataset used for network training (~38% gene pairs by 

shared agriGO annotations overlap the training data) and one of the few other large-scale 

wheat annotation sets available for testing. To help reduce bias, we excluded agriGO terms 

that annotate more than 300 wheat genes. Next, the accuracy of functional gene pairs by 

WheatNet or by random chance was measured using the proportion of gene pairs that share 
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agriGO annotations for different coverage of the coding genome. We observed strong 

performance by WheatNet, in which a network covering approximately 20% of all genes map 

functional gene pairs with about 40% accuracy (Supplemental Figure 1). The quality of 

WheatNet was further evaluated by the degree of connectivity among genes involved in a 

particular biological process. Considering that genes for the same complex traits are more 

likely to be functionally coupled, high connectivity among known genes for a trait would 

support the quality of functional networks. We tested network connectivity for a group of 

genes based on two measures: (i) the number of edges among gene members (i.e., within-

group edge count) and (ii) the number of network neighbors that overlap among group 

members (i.e., network neighbor overlap). We used genes for two complex traits derived from 

proteomics studies: 45 genes with differential protein expression after Blumeria graminis f. 

sp. tritici infection (Mandal et al., 2014) and 17 genes with differential protein expression 

under drought conditions (Cheng et al., 2015). The significance of network connectivity was 

also measured based on a null distribution from 1000 random gene sets of the same size. We 

found that the connectivity among each trait’s genes was significantly higher than by random 

chance (Figure 1A-B). We consistently observed network communities of genes for both 

traits (Figure 1C-D). We conclude that WheatNet successfully predicts additional genes that 

are involved in a given trait. 

The WheatNet web server provides two options for prioritizing genes for wheat traits: (i) 

direct neighbors in the gene network and (ii) context-associated hubs (CAHs). In the first 

approach, a user submits genes known for a trait that can guide network searches for new 

candidate genes. New genes are then ranked by the strength of evidence connecting them to 

the “guide genes,” measured for each candidate gene as the sum of network edge scores from 
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that gene to the guide genes. The result page provides the ranked list of candidates and a 

visualization of the local guide gene network (Figure 1E). To provide functional clues for 

candidate genes, WheatNet provides available wheat and Arabidopsis gene annotations from 

the Gene Ontology biological process (GOBP) (Supplemental Methods).  

In the second approach, users exploit gene expression data related to a trait of interest. Gene 

expression profiles are one of the most common types of genomic data, and differential 

expression analysis provides many genes that are potentially associated with given traits such 

as abiotic and biotic stresses. However, many genes that are associated with stress conditions 

are not differentially expressed. Hypothesizing that a gene associated with many 

differentially expressed genes (DEGs) in stress (i.e., CAHs) is likely to be responsible for 

responses to the given stress condition, we prioritized genes by connections to the context-

associated DEGs. To conduct CAH prioritization, we first defined a subnetwork that 

comprises a hub gene and all of its network neighbors in WheatNet. For the gene 

prioritization, we considered only subnetworks with hub genes that have at least 50 network 

neighbors. Assuming that DEGs are representative genes for a relevant biological context, we 

prioritized hub genes based on the enrichment of their network neighbors for the DEGs, 

measured using Fisher’s exact test. The hub genes with significant enrichment (P < 0.01) of 

network neighbors for the DEGs are considered as CAHs and are presented as candidate 

genes for the context-associated trait. Similar to the network direct neighborhood search, all 

candidate genes are appended by GOBP annotations for wheat genes and for Arabidopsis 

orthologs. In addition, users can access a network view of a CAH and its connected DEGs by 

clicking each candidate gene (Figure 1F). 

The WheatNet predictions by each of the network-based gene prioritization methods were 
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validated as follows: For the network direct neighborhood method, we evaluated the new 

candidate genes for drought stress response that were predicted by submitting 17 genes with 

differential protein expression under drought conditions (Cheng et al., 2015) as guide genes. 

We hypothesized that novel candidate genes for drought response are also likely to be 

expressed differentially under drought conditions. Thus, we investigated the enrichment of 

candidate drought response genes from DEGs under drought conditions. We generated a set 

of 2,346 DEGs under drought condition based on genes that showed more than 4-fold 

changes in expression levels at P < 0.01 (SRP045409 of NCBI Sequence Read Archive) (Liu 

et al., 2015). We found 15 drought-condition DEGs among the top 50 candidate genes by the 

network direct neighborhood method, which indicates more than 7-fold enrichment over 

predictions by random chance (15/50 = 0.3 by WheatNet vs. 2346/56233 = 0.042 by random 

chance). For the CAH method, we evaluated the candidate genes for Fusarium graminearum 

infection response that were predicted by submitting 837 DEGs after infection with F. 

graminearum (GSE54551 of NCBI Gene Expression Omnibus database) (Wojcik et al., 2015) 

as user input data. We found that the top 100 candidates by CAHs were significantly enriched 

for GOBP annotations relevant to fungus infection based on Arabidopsis orthologs: ‘response 

to chitin’ (GO:0010200, P = 9.72 × 10-31), ‘regulation of plant-type hypersensitive response’ 

(GO:0010363, P = 8.20 × 10-21), ‘defense response to fungus’ (GO:0050832, P = 1.73 × 10-

20), ‘response to fungus’ (GO:0009620, P = 1.03 × 10-8), and ‘detection of biotic stimulus’ 

(GO:0009595, P = 3.43 × 10-5).  

These results indicate that WheatNet can effectively prioritize novel candidate genes for 

complex traits, including those governing abiotic and biotic stress responses, by using 

multiple network-based methods, which can be easily performed by simple submission of 
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input data in the companion web server. WheatNet complements other types of knowledge 

mining systems (Hassani-Pak et al., 2016) and provides a useful resource for systems biology 

and predictive genetics analysis of wheat. 
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Figure legend 

Figure 1. Overview of WheatNet 

Degree of connectivity (A) among 45 genes for response to Blumeria graminis f. sp. Tritici 
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infection and (B) among 17 genes for response to drought stress were measured by 

determining the number of edges among group members (i.e., within-group edge count) or 

the number of network neighbors that overlapped among group members (i.e., network 

neighbor overlap) by using WheatNet (red stars) or 1000 random gene sets having the same 

size (black circles). Largest components of networks of (C) the genes for response to B. 

graminis f. sp. Tritici infection and (D) those for response to drought stress by WheatNet. (E) 

Results of gene prioritization by direct neighborhood method. The top 100 candidate genes 

and associated Gene Ontology terms are listed in a table. In addition, the network of guide 

genes and candidate genes is shown. (F) The results of gene prioritization by the context-

associated hub method. The top 100 predictions and associated Gene Ontology terms are 

listed in a table. By clicking each candidate gene, users can view a network composed of the 

hub gene and connected differentially expressed genes. 
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