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ABSTRACT

Network medicine has proven useful for dissecting
genetic organization of complex human diseases. We
have previously published HumanNet, an integrated
network of human genes for disease studies. Since
the release of the last version of HumanNet, many
large-scale protein–protein interaction datasets have
accumulated in public depositories. Additionally, the
numbers of research papers and functional anno-
tations for gene–phenotype associations have in-
creased significantly. Therefore, updating HumanNet
is a timely task for further improvement of network-
based research into diseases. Here, we present Hu-
manNet v3 (https://www.inetbio.org/humannet/, cov-
ering 99.8% of human protein coding genes) con-
structed by means of the expanded data with im-
proved network inference algorithms. HumanNet v3
supports a three-tier model: HumanNet-PI (a protein–
protein physical interaction network), HumanNet-FN
(a functional gene network), and HumanNet-XC (a
functional network extended by co-citation). Users
can select a suitable tier of HumanNet for their study
purpose. We showed that on disease gene predic-
tions, HumanNet v3 outperforms both the previous
HumanNet version and other integrated human gene
networks. Furthermore, we demonstrated that Hu-
manNet provides a feasible approach for selecting
host genes likely to be associated with COVID-19.

INTRODUCTION

Functional relations between highly wired genes under-
lie complex phenotypes of organisms. Hence, life scien-

tists have tried to delineate interactions between genes and
their products through diverse experimental and computa-
tional approaches. The integration of interactions inferred
from various datasets and methods generally increases the
reliability and coverage of a gene network (1). Many in-
tegrated human gene networks have been developed, and
some are well maintained and used widely (2–6). We have
also developed a functional network of human genes, Hu-
manNet (7) by integrating inferred co-functional relations
from diverse datasets, encompassing co-citation (CC) in
PubMed articles, co-expression (CX), protein–protein in-
teraction (PI), genetic interaction (GI), protein domain co-
occurrence, and genomic context similarity. This network of
human genes has been further expanded by including inter-
actions between proteins evolutionarily conserved between
human and other organisms. The initial version of Human-
Net has gone through a major update via inclusion of func-
tional omics data newly accumulated in public depositories.
The resultant HumanNet v2 showed substantially improved
performance on disease gene predictions (8).

Advanced high-throughput technologies accelerated data
generation further and accumulated large amounts of
functional ’omics data during the past few years. There-
fore, updating HumanNet is a timely task for further im-
provement of network-based predictions of disease genes.
Here, we present HumanNet v3 (https://www.inetbio.org/
humannet/), which showed a significant performance im-
provement because of the inclusion of the new data and bet-
ter network inference algorithms. HumanNet v3 supports
a three-tier model: HumanNet-PI (a protein–protein physi-
cal interaction network), HumanNet-FN (a functional gene
network), and HumanNet-XC (a functional network ex-
tended by CC). Users can select an appropriate tier of the
network for their purpose of a study. Using multiple sources
of disease gene annotations, we proved that Human-
Net v3 outperforms HumanNet v2 and other integrated
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Table 1. Comparison between HumanNet v2 and v3

Component network HumanNet v2 HumanNet v3

Gold Standard Gene Ontology Biological Process (21 October
2012) (IDA, IMP); MetaCyc

Gene Ontology Biological Process (8 March 2021)
(IDA, IMP); MetaCyc r22.5

CC Based on ∼300k full-text articles from PubMed
Central

Based on ∼650k full-text articles from PubMed
Central; Updated algorithm for link prioritization

CX Based on 125 microarray-based and 33
RNA-seq-based GSEs (16,220 samples in total)

Inherited from HumanNet v2; Re-trained with the
new Gold Standard

CE → GI Co-essentiality links based on >100 shRNA
and > 400 CRISPR-Cas9-based essential gene
profiles

Genetic interactions from BioGRID and
iRefIndex r14 and co-essentiality links based on
∼800 CRISPR Cas9-based essential gene profiles

DB Based on three pathway databases [KEGG
(5 January 2017), BioCarta (5 January 2017), and
Reactome (3 January 2017)]

Latest version of the databases [KEGG (12 April
2021), BioCarta (12 April 2021), and Reactome
(14 April 2021)]; Updated algorithm for link
prioritization

DP Based on domain profiles by InterPro r46 Profile Based on domain profiles by InterPro r84 Profile
GN Based on 1748 prokaryotic (1626 bacteria and 122

archaea) genomes, 754 human metagenomes and
242 ocean sample metagenomes

Based on 9428 genus representative genomes of
Prokaryotes from GTDB r95

IL Transfer 10 latest functional gene networks for
five species and transfer PIs of four vertebrate
species (dog, cattle, rat and chicken) in iRefIndex
r14; All orthology-transferred networks were
integrated into a single network

Inherited from HumanNet v2; Excluded from the
final HumanNet v3

PG Based on 1626 bacterial and 122 archaeal
genomes Analyzed two phylogenetic profiles for
bacteria and Archaea, separately.

Inherited from HumanNet v2 Re-trained with the
new Gold Standard

LC → PI Non-redundant PI set from IRefIndex r14 Non-redundant PI set from iRefIndex r17,
BioPlex1, 2 and 3, BioGRID (v4.3.196), and
IntAct (10 March 2021) databases; updated
algorithm for link prioritization

HT → PI Based on seven protein complex mapping data
sets and five binary PI screen data sets

CC: co-citation; CX: co-expression; CE: co-essentiality; GI: genetic interaction; DB: database; DP: domain profile; GN: gene neighboring; IL: interolog;
PG: phylogenetic profile; LC: literature curation; HT: high-throughput protein–protein interaction; PI: protein–protein interaction.

networks of human genes. In addition, we demonstrated
that HumanNet-based prediction can prioritize human
genes that are highly likely to be associated with COVID-
19, suggesting its usefulness in COVID-19 research.

EXPANSION OF HUMANNET

Improvements in network inference

Detailed descriptions of the network construction are pro-
vided in Supplementary Methods, and the improvements
of HumanNet v3 compared with HumanNet v2 are sum-
marized in Tables 1. Here, we briefly describe the updates
in methods and data sources. We first updated gold stan-
dard gene pairs based on shared pathway annotation be-
cause their size and quality are critical for network model
training and evaluation. We generated a set of gold standard
gene pairs using the latest release of Gene Ontology Biolog-
ical Process (GOBP) (2021-03-08 release) (9) and MetaCyc
(release 22.5) (10). For GOBP, we used only IDA and IMP
evidence codes to generate reliable gold standard gene pairs.
As a result, the number of gold standard gene pairs almost
doubled (from 124 950 to 260 962 links) while genome cov-
erage increased by 69% (from 5190 to 8779 genes) as com-
pared to the previous version. Size expansion of training
data generally improves network modeling, often by sal-
vaging functional links that were excluded due to under-
evaluation because of insufficient size of the previous train-
ing data. For example, HumanNet v3 inherited the inferred

functional links based on CX and phylogenetic profiling
(PG) from the previous HumanNet but rescued substan-
tially more links with higher likelihood than that of random
gene pairs by retraining them with the new gold standard
data (Figure 1A, B, Supplementary Table S1, Supplemen-
tary Figure S1). All network links were evaluated by means
of a log likelihood score scheme, just as was the case for the
earlier HumanNet.

We also improved HumanNet by expanding the source
data and optimizing the network inference algorithms. The
number of full-text PubMed Central articles used for con-
structing the CC network grew from 293 139 to 694 572, a
2.37-fold increase. In addition, there have been considerable
updates of human PI maps as a consequence of large-scale
experiments (11–13). Therefore, we updated the PI data us-
ing the non-redundant set of the latest IntAct (14), iRe-
fIndex (15), BioGRID (16) and BioPlex (12). Furthermore,
we took full advantage of updated pathway databases such
as KEGG (17), Reactome (18) and Biocarta (19) to infer
functional links by means of the pathway database (DB).
We have previously prioritized the links for CC, PI and DB
networks with accounting for the specificity of interactions
(i.e. links for hub genes received less weight). Nevertheless,
for the previous HumanNet, we did not use the number of
pieces of supporting evidence for each pair of functionally
associated genes. For HumanNet v3, we gave more weight
to gene pairs with more pieces of supporting evidence for
the associations (Supplementary Figure S2). We observed a
substantial increase in genome coverage and sizes of CC, PI
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Figure 1. An overview of HumanNet v3. (A, B) Bar graphs illustrating improvements in the numbers of genes (A) and functional links (B) as compared
to HumanNet v2. (C) A summary of the three-tier model of HumanNet v3.

and DB networks as a result of the expanded source data
and edge scoring with taking account of all supporting evi-
dence for each gene pair (Figure 1A, B, Supplementary Ta-
ble S1). In particular, the network size increased ∼15-fold
(from 72 819 to 1 081 518) and ∼4-fold (from 158 499 to
633 460) for the CC and PI network, respectively.

Co-functional networks based on a gene neighborhood
(GN), domain profile association (DP), and GI were also
improved by the enlarged data sources. Recently, the phy-
logenetic tree of prokaryotic species was expanded signif-
icantly by the addition of species identified by means of
metagenome-assembled genomes (20,21). HumanNet v3
takes advantage of the GN relations in newly identified
prokaryotic species’ genomes available in the Genome Tax-
onomy Database (GTDB) (22). The functional associations
mediated by a GN were inferred from 9428 prokaryotic
genomes for HumanNet v3, whereas HumanNet v2 in-
volved fully sequenced genomes only from 1746 prokary-
otes and 996 metagenomic contigs. Consequently, the GN
network size increased ∼4-fold (from 24 862 to 97 565;
Figure 1B). The inference of the domain profile associa-
tion network is also based on updated InterPro (release
84) (23). Although we employed the same weighted mu-
tual information scheme (24) as in the previous Human-
Net, we obtained ∼60% more links than in the previous
network (an increase from 45 958 to 73 414). HumanNet
v2 contains a co-essentiality network, which is a type of GI
network inferred from large-scale CRISPR–Cas9 knockout
profile similarities between genes. We combined GIs based
on small-scale knockout assays retrieved from databases
with the coessentiality network to construct a GI network
for HumanNet v3. We retrieved GIs from BioGRID (16)

and iRefIndex (15) and inferred co-essentiality links from
updated DepMap (25) (2020 Q4 version). Consequently,
the GI network size for HumanNet v3 increased ∼2.5-fold
(from 71 243 to 174 509) (Figure 1B).

Interologs decreases network accuracy for human disease
genes

Interologs (26), protein-protein interactions transferred
from other species via orthology, can also map functional
associations between genes of a target species. Many inte-
grated gene networks include interologs because they often
improve network coverage and prediction performance, es-
pecially when there are difficulties in obtaining sufficient
edge information directly from the target species genes
(27). Nonetheless, given that many small- and large-scale
protein-protein interaction mapping projects for human
genes were carried out in the past several years, interologs
from other species may no longer supplement human in-
teractome information. To test this hypothesis, we obtained
human interologs and integrated them with all eight com-
ponent networks described above (CC, CX, DB, DP, GI,
GN, PG and PI). We then investigated whether the incor-
poration of the interologs improves accuracy of connecting
genes for the same diseases by GWAS Catalog (28) or Dis-
GeNET (29). We found that the incorporation of interologs
decreases network accuracy for human disease genes (Sup-
plementary Figure S3). These results suggest that the cur-
rent human interactome already covers most of evolution-
arily conserved protein-protein interactions, and additional
interactions transferred from other species via orthology
may introduce more false positives than true associations
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between human disease genes. On the basis of these results,
we finally decided not to include interologs in HumanNet
v3.

The three-tier model of HumanNet v3

Users may benefit from a network more appropriate for
their research purpose. For example, a protein–protein
physical interaction network will be more suitable for mode-
of-action studies of disease mutations, and a network with
no CC links may reduce over-evaluation of disease gene pre-
diction by the literature bias toward disease studies. The
previous HumanNet was based on four tiers including net-
works that contain interologs. As interologs are no longer
incorporated into HumanNet, we offer a three-tier model
for HumanNet v3: HumanNet-PI (protein-protein interac-
tion network), HumanNet-FN (functional gene network),
and HumanNet-XC (gene network extended by CC) (Fig-
ure 1C). HumanNet-PI consists of physical interactions
only. Therefore, users who wish to study protein complexes
or ligand–receptor interactions may utilize HumanNet-PI.
HumanNet-FN is an integrated functional gene network
encompassing associations between human genes derived
via diverse computational and experimental approaches, in-
cluding a PI network. HumanNet-XC is a gene network
further expanded by CC links. Although a CC network
could substantially increase network coverage and predic-
tion performance, it may face circular reasoning when net-
work performance is evaluated by means of literature-based
resources. We recommend HumanNet-XC to users who
want to exploit the full prediction power of HumanNet
whereas HumanNet-FN to those who need a more conser-
vative analysis.

The increases of each component network led to signif-
icant expansion of the integrated networks. The most in-
clusive network, HumanNet-XC, contains 1 125 494 links,
which is more than twice the number of links for the largest
HumanNet v2 (525 537 links). The coverage of the human
protein coding genome also increased from 17 929 in Hu-
manNet v2 to 18 462 genes in HumanNet v3, thereby cov-
ering 99.8% of protein coding genes of the consensus coding
sequence (CCDS) r22 (30).

Assessment of HumanNet v3 for disease gene prediction

Next, we systematically evaluated HumanNet v3 for dis-
ease gene predictions. We compared the previous Human-
Net (v2) with full size (XN) (8) and the three tiers of Hu-
manNet v3: HumanNet-PI, FN and XC. We also assessed
other publicly available integrated human gene networks
such as STRING (v11.5) (2), GeneMania (as of 27 April
2021) (5), ConsensusPathDB (as of 31 July 2021) (4), PC-
Net (as of 5 August 2021) (31), FunCoup (v5.0) (3) and
GIANT (as of 25 September 2021) (6) (Supplementary Ta-
ble S2). Similar to HumanNet, these networks consist of
functional associations derived from diverse evidence. First,
network precision was tested based on the proportion of
gene pairs that share the same disease annotations. Ex-
cept for PCNet, all the networks have edge scores; thus,
the network precision levels were measured with the cost

of disease genome coverage. Two independent databases of
disease gene annotations––GWAS Catalog (28) and Dis-
GeNET (29)––were employed to benchmark disease gene
predictions. To conduct a more conservative evaluation, we
removed GWAS candidate genes from the articles that were
used for our inference of the CX network. This modifica-
tion of the benchmarking dataset may reduce the chances
of circular reasoning in disease gene predictions. Likewise,
we used only a curated set of disease–gene associations from
the DisGeNET database to reduce bias toward literature-
based gene interactions.

We first measured the percentage of links that shared the
same disease annotations and the coverage for the disease
gene set. For DisGeNET disease genes, among the three
tiers of HumanNet v3, HumanNet-XC showed the highest
precision, followed by HumanNet-FN and HumanNet-PI
(Figure 2A). Compared to HumanNet v2, HumanNet-XC
manifested clearly higher precision across the entire range
of disease genome coverage, and HumanNet-FN showed
comparable precision. Notably, HumanNet-XC outper-
formed all other integrated human gene networks across
the entire range of disease genome coverage. For the dis-
ease genes from GWAS Catalog, we observed a similar
ranking of network precision among the networks (Fig-
ure 2B). Taken together, these results indicate that disease
gene connections identified by HumanNet v3 are generally
more accurate than those inferred by the previous Human-
Net and by other integrated human gene networks available
publicly.

Network accuracy contributes to the performance of a
network-based disease gene prediction. Here, we evaluated
disease gene prediction via direct neighbors in the networks.
Conceptually, genes that connect to a group of disease genes
are likely to be involved in the same disease. Indeed, genes
known for the same disease tend to be connected with each
other. Thus, if we prioritize genes on the basis of the con-
nectivity, the genes known to be involved in a disease are
expected to be retrieved with high rankings. The retrieval
rate of known disease genes can be measured by receiver-
operating characteristic (ROC) analysis, and its results can
be summarized as the area under the ROC curve (AU-
ROC). Because we generally consider only the top hun-
dreds of candidates for follow-up functional analysis, the
AUROC for early retrieval is practically more important.
Therefore, we assessed the disease predictions based on
the AUROC up to a false positive rate of 1%. We found
that HumanNet-XC and STRING share the first place in
terms of performance among all the tested networks for
the comparison with disease genes annotated by both Dis-
GeNET and GWAS Catalog (Figure 2C, D). Disease gene
prediction by HumanNet-XC was not significantly differ-
ent from that of STRING but significantly outperformed all
the other networks (P < 0.0001, two-tailed Mann–Whitney
U test). Because network size also contributes to network-
based gene prioritization, STRING may compensate for
its lower network precision (as compared to HumanNet-
XC, see Figure 2A, B) by ∼5-fold more links (Supplemen-
tary Table S2). Overall, we conclude that HumanNet v3
and STRING (separately) perform best on disease gene
prediction.
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Figure 2. Network assessment for disease gene predictions. (A, B) The percentage of gene pairs that share disease annotation (y-axis, link precision)
according to the DisGeNET (A) and GWAS Catalog (B) gene coverage (x-axis, gene recall) are cumulatively calculated for every 1000 links from the top
links. As the PCNet network has no link score, the link precision and gene recall are calculated for the entire link. (C, D) The area under the receiver-
operating characteristic curve (AUROC) up to a false positive rate (FPR) of 1% was measured for the network-based retrieval of disease genes annotated
by DisGeNET (C) or GWAS Catalog (D) (***P < 0.0001, ns: P > 0.05 according to the two-tailed Mann–Whitney U test).

UPDATES IN THE WEB INTERFACE

The HumanNet v3 web server largely inherited the user in-
terface from the previous version. On the other hand, there
are major improvements in network information. The most
important update is the inclusion of literature data from
PubMed that support PI and CC associations. In addition,
all disease annotations were updated by means of the latest
versions.

We continue to offer two prediction modules on the Hu-
manNet v3 web server: network-based disease gene predic-

tion and network-based disease annotation prediction. In
the network-based disease gene prediction, a user submits a
known gene set, dubbed guide genes, for a disease of inter-
est. Then, the user can examine network neighbors of the
guide genes in a network view. The network view is imple-
mented interactively; accordingly, the user can obtain de-
tailed information on a link or gene of interest by selecting
an object. In HumanNet v3, we reinforced the link informa-
tion by presenting supporting evidence (publications) for PI
and CC links. Next, the web server outputs metrics of how
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Figure 3. Validation of HumanNet-based candidate genes for COVID-19. (A) The number of connections between 43 guide genes derived from COVID-19
genome-wide association studies (GWAS) in HumanNet-XC. The histogram represents the distribution of network connectivity from 10 000 random 43
genes, and red vertical line indicates the number of connections between the 43 guide genes. (B) Mean hit count to 722 COVID-19 related gene sets. The red
line and black line represent the mean hit count for top candidates and that for all other genes, respectively. (C-D) Enrichment ratio of DEGs specific for
COVID-19 patients (C) and healthy controls (D) among top candidate genes. Different size of top candidates for validation were marked by color codes.
DEGs were derived from three independent studies (Stephenson et al. (36), Schulte-Schrepping et al. (37), and Ren et al. (38)) and four distinct cell types
(T, T cells; NK, natural killer cells; Myel, myeloid cells; B, B cells).

much the guide genes are interconnected in the network and
predictive power of HumanNet for the guide genes accord-
ing to ROC analysis. The web server also presents candidate
genes for the given diseases; the genes are sorted by net-
work prioritization scores. In network-based disease anno-
tation prediction modules, a user submits a query gene(s).
After that, the web server predicts the diseases potentially
associated with the query gene by retrieving disease anno-
tations from its neighbors. HumanNet v3 web server pro-
vides the latest versions of five gene annotation databases
for pre-defined guide genes and prediction interpretation:
GOBP (9), GWAS Catalog (28), DisGeNET (29), DIS-
EASES (32) and Human Phenotype Ontology (33) (Supple-
mentary Table S3). Detailed methods and interpretations
for the two disease research modules are described on the
‘Tutorial’ tab of the web server. Finally, on the ‘Download’
tab of the web server, we provide gold standard gene pairs
and all the component networks that were integrated into
HumanNet v3.

CASE STUDY: HUMANNET-BASED PREDICTION OF
HOST GENES FOR COVID-19

COVID-19 is a highly contagious disease by severe acute
respiratory syndrome coronavirus (SARS-CoV-2), resulting
in more than 4.7 million deaths worldwide as of Septem-
ber 2021 (https://covid19.who.int/). Many human genes are
involved in infectious diseases. Therefore, identification of
host genes associated with COVID-19 will facilitate de-
velopment of strategies for its prevention and treatment.
To demonstrate the utility of HumanNet in COVID-19
study, we performed web-based disease gene prediction
with guide genes that are known to be associated with
COVID-19. Recently, international consortium of COVID-
19 Host Genetics Initiative published results from genome-
wide association studies (GWAS) comprised >49 000 pa-
tients (34). We compiled 43 human genes reported by the
COVID-19 GWAS (Supplementary Table S4, Supplemen-
tary Methods) and submitted them into HumanNet web
server. We found that the 43 guide genes are significantly
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more connected to one another in the HumanNet-XC com-
pared to the same size of randomized gene sets (Figure 3A,
P < 0.0001 by permutation test). HumanNet-XC priori-
tized a total of 4418 candidate genes by connection to the
43 guide genes.

To confirm the validity of the network-based gene pre-
diction, we utilized a community-wide collection of 722
COVID-19 related gene sets (35) derived from various ex-
perimental assays such as genome-wide CRISPR screens,
genome-wide differential expression analysis in cells and
tissues, and physical interactions with SARS-CoV-2 pro-
teins. Genes that are likely to be associated with COVID-19
will appear among the hit lists of many experimental stud-
ies. Accordingly, we may expect to observe larger hit count
to the 772 gene sets for more likely COVID-19 genes. Hit
counts of human genes for the 772 gene sets are summa-
rized in Supplementary Table S5. We validated HumanNet-
based predictions for COVID-19 genes based on mean hit
count of candidate genes (Supplementary Methods). The
genes in top 50 ranks showed ∼7-fold higher mean hit
count compared to that for all other genes. The mean hit
count decreases as rank index increases and maintained ∼2-
fold of that for all other genes after top 500 ranks (Fig-
ure 3B). These results suggest that top candidate genes by
HumanNet v3 are highly likely to be involved in COVID-
19. We also validated predicted genes by differentially ex-
pressed genes (DEGs) for COVID-19 patients or healthy
controls generated from three independent single-cell RNA
sequencing studies (36–38). For each study, we compiled
DEGs from four immune cell types: T cells, B cells, nat-
ural killer cells and myeloid cells (Supplementary Meth-
ods, Supplementary Table S6). We calculated enrichment
ratio of the proportion of DEGs for top-ranked genes com-
pared to that for all other genes. Across all cell types, top-
ranked genes were more enriched for DEGs from COVID-
19 patients than DEGs from healthy controls. Furthermore,
more highly-ranked genes resulted in higher enrichment
ratio of COVID-19 specific DEGs (Figure 3C, D). These
results demonstrated feasibility of HumanNet-based gene
prioritization for COVID-19. This case study could be eas-
ily reproduced in the HumanNet web server.

CONCLUSIONS

In this report, we present an updated HumanNet version
with major expansion of network information. Interologs
were not integrated into HumanNet v3 because we noticed
a decrease in the accuracy of the network for disease gene
associations. This finding implies that protein-protein inter-
action mapping during the past few years filled out a large
portion of the human interactome, which has been sup-
plemented by network information transferred from other
species only. Despite the exclusion of interologs, we ex-
panded HumanNet by more than twofold as compared to
the previous version. We found that HumanNet v3 outper-
forms both the previous HumanNet and most of the in-
tegrated human gene networks currently available publicly.
Finally, we demonstrated that HumanNet can predict host
genes associated with COVID-19. These results together
support that the improved HumanNet will continue to pro-
vide an effective resource for the study of a wide variety of
human diseases.

DATA AVAILABILITY

HumanNet v3 is available under the Creative Commons
Attribution-ShareAlike 4.0 International License at https:
//www.inetbio.org/humannet. The data can be accessed
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crosoft Edge, Apple Safari, Mozilla Firefox.
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