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Mass-spectrometry based protein quantitation (e.g. spectral counting) is one of the most 
accurate and easiest methods for high-throughput protein quantitation 
(http://www.abrf.org/ResearchGroups/Proteomics/Studies/ABRF_Presentation_2006.pdf)
. Our paper describes a novel method to derive absolute protein expression (APEX) 
measurements from MS-based data, and below we describe details of the method.  

This document provides further descriptions of technical aspects of our method 
(Section 1) and details of its application to the yeast, E.coli and mouse proteome 
(Sections 2 and 3). We demonstrate that APEX is a simple method that can be used in 
standard MS experiments (Sections 1.1., 1.3.), is highly reproducible (Sections 1.2., 
1.8.), comparable or better than other approaches (Sections 1.4., 1.9.), accurate (Section 
1.5., 1.8.), robust to different experimental conditions (Section 1.8.), and scalable to any 
organism (Sections 1.7., 2.3., 2.4.) 

 

1. Establishing and validating APEX 

1.1. Confidence in peptide and protein identification 
False positive rates (FPR) or false discovery rates (FDR) are an important issue in 

proteomics.  We measure our FDRs using the algorithms in PeptideProphet and 
ProteinProphet1. We have independently checked these values for a number of datasets 
by performing spectral database analysis against a shuffled version of the proteins (not 
shown).  

ProteinProphet1 provides an error model for the estimated false discovery rate (FDR) of 
mass spectrometry (MS) protein identification (Figure S1). A 5% (10%) FDR requires a 
minimum ProteinProphet score pi of 0.78 (0.63) both in minimal (YMD) and rich (YPD) 
medium, resulting in 454 (555) proteins in YPD and 437 (550) in YMD. In E. coli, a 
minimum ProteinProphet score pi of 0.60 (5% FDR) results in 504 identified proteins. 
The FDR calculation is designed to separate true from false positive identifications, 
regardless of the source of error, i.e. methionine oxidation, other post-translational 
modifications, or errors in the mass measurements, such as inefficient peptide 
fragmentation. We explicitly include a quantitative measure of confidence for each 
protein’s identification (pi) as a parameter in APEX, thus accounting for the variety of 
errors.   

The main text discusses the results obtained from using the high-confidence set of 454 
proteins (5% FDR).  Below, we also provide the results for the set of 555 proteins (10% 
FDR).  In brief, using 10% FDR (pi≥0.63) as cutoff produces very similar correlations 
between protein abundance and other protein properties.  The average of at least two of 
three protein abundance measurements correlate well with the average of at least two of 
three different mRNA measurements (Rs=0.84, R2=0.73 in log-log plot, Figure S2, A), 
which is identical to what is observed with the 5% FDR APEX set (RS=0.85, R2=0.73 in 
log-log plot, Figure 4A main text).  Notably, the correlation is very similar when we 
compare APEX alone against an average of two of three mRNA measurements (Rs=0.76, 
R2=0.65 in log-log plot, Figure S2B). The average number of proteins per mRNA ranges 
from ~4,300 (log-log) to ~6,200 (linear-linear).  
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Further, the codon adaptation index (CAI) correlates with protein abundance at 10%  
FDR (RS=0.75, R2=0.68; Figure S2C), similar to what we show for the proteins of 
5%FDR (RS=0.79, R2=0.70, see main manuscript and Figure S10).  The APEX-derived 
protein abundances with 10% FDR have moderate correlation with Western blot and 2D-
gel electrophoresis data (RS=0.60, R2=0.34 and RS=0.77, R2=0.48, respectively, in log-
log plot), again similar to what we show for the 5% FDR set (see main text; RS=0.61, 
R2=0.34 and RS=0.80, R2=0.52).  

Thus, in general, the dataset with higher false discovery rate (10% FDR) produces >100 
(22%) more proteins and shows the same trends as the data with 5% FDR.  

Note that before a peptide can be associated with a particular protein, as with 
ProteinProphet1, each mass spectrum has to be associated with a particular peptide.  The 
accuracy of these peptide assignments is estimated by PeptideProphet1.  In our analysis, 
PeptideProphet scores were first calculated for each peptide, using the default cutoff of 
0.2 which corresponds to <26% FDR for peptide identification. This FDR represents the 
upper bound of the false positive identification rates – the actual FDR is lower, as 
ProteinProphet re-calculates the FDR for each peptide conditioned on the positive 
identification of the protein by other peptides1. We also tested a more stringent cutoff for 
peptide identification, with very similar results: the total number of peptides observed 
with a peptide score  >0.2 correlates with the total number of peptides observed with a 
peptide score >0.5 (corresponding to 10% FDR) with R2=0.997. Further, the peptide 
scores are used by ProteinProphet to calculate protein scores. For this reason, we used 
only the protein scores, but not the peptide scores for APEX calculations to avoid double-
counting.   

 

1.2. Reproducibility 
For reliable APEX and Z-score calculations as described in the main manuscript and 

here, it is important that the probability of observing each peptide in the mass 
spectrometer is constant between two samples.  Figure 2 in our manuscript demonstrates 
the strong correlation between APEX values from two different replicate sets of 
experiments. Below we describe further reproducibility tests.   

In order to increase protein coverage from a MudPIT experiment, we injected each 
biological sample several times into the mass spectrometer, and pooled these technical 
replicates.  APEX is highly reproducible between the different injections.  

The paper (main text) describes the correlation in abundance for proteins observed in 
two sets, pooling data from three injections each originating from one experiment (YMD 
medium). The log-transformed data is correlated with an R2=0.88, indicatory of high 
reproducibility.  

Figure S3 shows a similar plot using replicate data sets pooled from two and three 
injections, with cells grown in YPD medium. The two data sets are correlated with an 
R2=0.95 for the non-transformed data (one outlier) and R2=0.75 for the log-transformed 
data.  The proteins were identified with a 5% FDR, resulting in a pi≥0.78 and pi≥0.74 
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cutoff for set 1 and 2, respectively.  The lower part of Figure S3 shows the error models 
for protein identification.  

The reproducibility also holds true when comparing data from the five individual 
injections (from the YPD experiment), as shown in Table S1 below.  Note that the table 
compares the number of peptides observed per protein (left side of columns), and the 
calculated APEX values (right side), providing R2-values as measure of correlation.  The 
upper right half of the matrix compares the non-transformed numbers, the lower left 
compares the log-transformed numbers.  The overall reproducibility for the peptide 
counts (APEX) is 0.85±0.03 (0.89±0.03) for the log-transformed data, and 0.95±0.03 
(0.92±0.03) for the linear data.    

In Section 1.8., we discuss the high reproducibility between different experiments using 
a synthetic mixture of ten proteins of known concentration without and with added 
cellular lysate (R2=0.997 on linear-linear, Figure S24D; R2=0.98 on log-log, Figure 2B). 

Table S1. Reproducibility: Correlation coefficients (R2-values) for replicate 
experiments.  

R2 YPD1 YPD2 YPD3 YPD4 YPD5  

 Pept APEX Pept APEX Pept APEX Pept APEX Pept APEX  

YPD1 -  0.98  0.97 0.95  0.93 0.97  0.94 0.95  0.90  

YPD2 0.86  0.88 -  0.98  0.96 0.94  0.92 0.96  0.92  

YPD3 0.82  0.82 0.85  0.87 -  0.88  0.86 0.98  0.95 linear 

YPD4 0.86  0.87 0.81  0.86 0.88  0.90 -  0.91  0.88  

YPD5 0.81  0.82 0.88  0.89 0.85  0.88 0.87  0.90 -   

  log- transformed    

 

1.3. Training the classifier for learning Oi 

The classifier was trained on a set of 4,023 yeast tryptic peptides using machine 
learning techniques.  For each peptide, a vector of 22 features was constructed from the 
peptide’s length, molecular weight, and 20 amino acid frequencies (see example below).   
In addition, each peptide was flagged as observed (Obs) or not (Not), considering 
peptides with up to 2 missed tryptic cleavages (Supplemental Dataset S4). 

 

EXAMPLE: 3 sample peptide feature vectors from protein RPS21B (Genbank 
Accession 6322325): 
peptide MENDK: 5, 636.266, 0.000, 0.000, 0.200, 0.200, 0.000, 0.000, 0.000, 0.000, 0.200, 

0.000, 0.200, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, Not 

peptide MENDKGQLVELYVPR: 15, 1790.91, 0.000, 0.000, 0.067, 0.133, 0.000, 0.067, 0.000, 
0.000, 0.067, 0.133, 0.067, 0.067, 0.067, 0.067, 0.067, 0.000, 0.000, 0.133, 0.000, 0.067, 
Not 
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peptide GQLVELYVPR: 10, 1173.66, 0.000, 0.000, 0.000, 0.100, 0.000, 0.100, 0.000, 0.000, 
0.000, 0.200, 0.000, 0.000, 0.100, 0.100, 0.100, 0.000, 0.000, 0.200, 0.000, 0.100, Obs 

 

   During training, more than 30 classifiers or variants (i.e, classifiers with bagging) 
were tested for their performance in separating the observed from non-observed peptides, 
testing each with 10-fold cross validation and evaluating performance with recall-
precision analysis. All classifiers were implemented in the Waikato Environment for 
Knowledge Analysis (Weka) version 3.4.4, available from 
http://www.cs.waikato.ac.nz/ml/weka/.  

Decision tree-based methods generally out-performed other approaches.  Tested 
classifiers included naive Bayes, logistic regression, J48 trees, Kstar, AD trees, decision 
stumps, LMT logistic model trees, NB trees, conjunctive rules, PART decision lists, 
Ridor (Ripple down rule learner), nearest neighbor generator rules, and OneR minimum 
error attribute classifiers.   The best-performing single rule classifiers were based upon 
length ((length <= 7.5) ==> Not) or molecular weight (878.421 > MW or MW > 
3675.815  ==> Not). 

The best-performing classifier, judged by requiring balanced performance in recall-
precision analysis on both Obs/Not peptides, was one based upon bagging with a forest of 
random decisions trees.  The performance of the classifier is shown in Table S2, 
followed by the three next best classifiers.  

 

Table S2. Classifier performance 

 Bagging with 
Random Forest 

Ridor Random 
Forest 

Regression 
with M5P 

trees 

Total correct 85.8% 84.4% 84.3% 80.0% 

Total incorrect 14.2% 15.6% 15.7% 20.0% 

TP ‘Not’ 0.90 0.91 0.89 0.81 

FP ‘Not’  0.31 0.44 0.36 0.26 

TP ‘Obs’ 0.69 0.56 0.64 0.75 

FP ‘Obs’ 0.10 0.10 0.11 0.19 

     

Classified as: Not Obs Not Obs Not Obs Not Obs 

Confusion matrix: 

      Not 

 

2961 348 2995 314 2932

 

377 

 

2685 624 

      Obs 222  492 314  400 256  458 182  532 

(TP – true positive; FP – false positive) 
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Each was trained using re-weighted training instances (cost-sensitive training) to 
balance performance on the two peptide classes. Note that the classifier based upon 
regression with M5P trees had a higher TP rate on the observed peptides (0.75 vs. 0.69); 
however, this classifier showed a large number of not-observed peptides misclassified as 
observed, as evident in the confusion matrix, leading to a lower overall performance 
(80% correctly classified instances, versus 85.8%). 

Additional performance statistics for the top classifier (Bagging with Random Forest): 

Table S3. Performance statistics 

Class TP Rate FP Rate Precision Recall F-Measure 

Not   0.895 0.311 0.930 0.895 0.912 

Obs   0.689 0.105 0.586 0.689 0.633 

(TP – true positive; FP – false positive) 

 

The best-performing classifier used cost-sensitive bagging (each bag 100% of the 
training set size2) to improve performance of the base classifier, which was a random 
forest of 10 decision trees2, each constructed while considering 5 random features. 

The top classifier’s performance can be seen most clearly by plotting the frequency 
histograms observed and non-observed peptides from the 4,023 peptide set, as shown in 
Figure S4A,B. The classifier and all training data are available as supplemental data to 
this paper, and is distributed via the Open Proteomics Database3.  

Further, we assume that the probability of observing a peptide is constant from 
condition to condition.  As the chemical identities of the peptides are identical, this is 
possible, with the exception of a mechanism such as differential ion suppression, where 
‘neighboring’ peptides in the separation differentially affect the ionization of the peptide 
of interest.  However, we note that this is precisely the factor that the MudPIT strategy is 
designed to overcome, and analyses of ion suppression in complex mixtures4, 5 
demonstrate that this issue diminishes with increasing stages of up-front sample 
fractionation. Thus, this is experimentally addressable and not a problem with APEX 
itself.   As we expect this tendency to be distributed more or less randomly across various 
peptides associated with a given protein, the total count of peptides observed from a 
protein will be reasonably robust, see also Section 1.6 for further discussion. Figure S24 
confirms that this is the case, with reproducible APEX measurements on a 10-protein 
control set in the presence and absence of yeast cell lysate.  

1.4. Performance of the classifier for learning Oi  
Probabilities of observing peptides in a shotgun proteomics experiment are learned from 

>4,000 peptides derived from 40 well-sampled proteins (Figure S4). Classifier-assigned 
probabilities are plotted for 714 true positive peptides (peptides actually observed from 
40 well-sampled proteins) and 3,309 true negative peptides (peptides not observed from 
the same proteins).  Thus, only 18% of peptides are expected to be observed in general, 
reflected by the smaller histogram (black bars, Figure S4B). Thus, it is not surprising 
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that, for example for yeast peptides, the expected number of peptides Oi is generally 
smaller than the number of unique peptides (Figure S4C).  

The classifier, trained using 10-fold cross validation, effectively separates these from 
the non-observed peptides.  A probability threshold of 0.5 gives a 69% true positive rate 
on observed peptides and 90% true positive rate on non-observed peptides, for a total 
accuracy of 86%. 

Applying a prior expectation of observing peptides from a protein i, i.e. Oi, substantially 
improves our estimates of protein abundance, as is shown in Table S4 below. Table S4 
lists R2 values of the correlation between APEX calculated with Oi values and without 
(Oi=1) and protein and mRNA abundance data. Protein abundance estimates were 
obtained from Western blot6 and 2D gel7 analysis; estimates of mRNA abundance are 
averages of at least two of three measurements (Affymetrix microarrays8, SAGE9, dual 
channel microarrays with genomic DNA reference10).  The prior expectation of observing 
peptides from protein i, Oi, is part of APEX’ core.   

When Oi is included in APEX calculations of protein abundance, the correlation with 
other estimates of protein or mRNA abundance improves by 5-33% (Table S4).  

Tables S4.  Oi significantly improves estimates of protein abundance.  R2-values of 
correlations of APEX and peptide counting.  

Yeast   
 Log(APEX) 

R2

Log(APEX, Oi=1) 
R2

Log[protein; Western] 0.34 0.22

Log[protein; 2D-gel] 0.52 0.33

Log[protein; flow cytometry] 0.49 0.42

Log[mRNA; average] 0.68 0.47

E. coli   
 Log(APEX) 

R2

Log(APEX, Oi=1) 
R2

Log[protein; 2D-gel] 0.21 0.16

Log[mRNA; average] 0.47 0.34

Synthetic protein mixtures   
 Log(APEX) 

R2

Log(APEX, Oi=1) 
R2

5-protein mixture without lysate 0.85 0.52

10-protein mixture without lysate 0.89 0.79

10-protein mixture with lysate 1:10 0.82 0.58

10-protein mixture with lysate 1:1 0.84 0.77
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1.5. Validation of APEX-based yeast protein abundances with other 
large-scale measurements 

In  the main text, we focus on the analysis of APEX-based protein abundances of yeast 
grown in rich (YPD) and minimal (YMD) medium.  Saccharomyces cerevisiae DBY8724 
cells11 (MATa GAL2 ura3 bar1::URA3) were grown with aeration at 30 °C until O.D. 
0.6-0.8 in either rich YPD medium (2 % yeast extract, 1 % peptone, 2 % glucose) or 
synthetic YMD minimal medium (0.7 % yeast nitrogen base without amino acids and 
ammonium sulfate (DIFCO Bacto), 2 % glucose, 5 g/L ammonium sulfate, and 20 mg/L 
uracil), pelleted, washed, resuspended in buffer (20 mM Tris-HCl, 100 mM NaCl) 
containing 1% protease inhibitor cocktail (Calbiochem, CA) and lysed with glass beads. 
Soluble protein extracts were diluted to 4 mg/ml into digestion buffer (50 mM Tris HCL 
pH 8.0, 1.0 M Urea, 2.0 mM CaCl2), denatured at 95 °C for 10 min, and digested with 
sequencing grade trypsin (Sigma, MO) at 37 °C for ~20 hours.   The trypsin digested 
protein extract was then further analyzed in tandem LC/LC/MS/MS as described in the 
main manuscript, and the APEX-based protein abundances calculated from the observed 
spectra.  

Yeast APEX-based protein abundances are consistent with estimates of protein 
abundance from other experiments for yeast growing in rich medium, i.e. high-
throughput Western blot6, 2D gel7 and flow cytometry analysis of GFP-tagged protein12. 
In fact, APEX correlates better with each of these datasets (Figure 2, main text) than the 
three other data sets correlate with each other (Figure S5, Western-2D: R2=0.05; 
Western-GFP: R2=0.43; 2D-GFP: R2=0.28).  

The GFP-tagged protein analysis is also available for yeast growing in minimal 
medium12.  Again, APEX compares well to this data set, with RS=0.64 (R2=0.41, Figure 
S6A) as well as for the subset of 102 proteins that are YMD-specific (R2=0.40, Figure 
S6B).   However, in contrast to the method by Newman et al., MS-based methods (like 
APEX) do not require labor-intensive establishment of GFP-tagged gene libraries, but 
can be conducted with standard mass spectrometry.  

In general, each of the approaches, Western blotting, 2D gels, GFP-tagging, and MS-
based technologies, have their own advantages and disadvantages.  For example, high-
throughput Western blot or the GFP-tag based approach are currently applicable to lower 
abundance proteins, however, they only apply to yeast, which is the only organism with a 
TAP- and GFP-tagged collection of strains available.  Also, to measure the ~3,800 
proteins required growing up ~3,800 different cultures of yeast cells, a non-trivial 
experiment.  

By contrast, APEX can be performed routinely for fewer proteins in a single day’s 
experiment. 2D gels offer a similar promise, but in practice are difficult to run and 
require extensive automated sample preparation and mass spectrometry in order to 
identify fewer proteins than we present with APEX. Further, when using APEX, the 
number of identified proteins and sensitivity to lower concentrations can be increased by 
future experiments using more sensitive MS methods, e.g. new high-resolution mass 
spectrometry proteomics technology (OrbiTrap). Thus, to measure many proteins without 
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expensive labeling, and to do it in any organism other than yeast, APEX is a reasonable 
choice.  

1.6. Normal distribution of the number of peptides per protein 
We use Z-scores to estimate the significance of differentially expressed proteins as 

measured by APEX.  To do so, the probability fi to observe a protein in all MS/MS 
spectra must be normally distributed.  Figure S7 shows that this is the case.  

The number of MS/MS spectra ni associated with a given protein (out of all MS/MS 
spectra N) can be seen as Bernoulli trial in which an MS/MS spectrum is either associated 
with a particular protein i or not.  As the total number of spectra N is different for each 
experiment, it is more useful to compare the fraction fi = ni / N.  With N being very large, 
the binomial distribution can be approximated by a normal distribution. As each 
experiment comprised at most six injections (replicates), only 6 or fewer data points are 
available for each protein to test normality.   We tested normality for the ten most and 
least abundant proteins (Figure S7). While there are two exceptions, FBA1 and ILV2, 18 
out of the 20 tests confirm normality (p>0.05 under the Shapiro-Wilk test).  

 

1.7. Analysis of E. coli protein abundance data.  
As further validation, we conducted similar MS analysis in a different organism, 

Escherichia coli, grown in minimal medium. Prior to these analyses, we calculated Oi 
values for all E. coli proteins using the same classifier and same procedures as described 
above (Supplementary Dataset S5). We estimated E. coli protein abundances using 
APEX and compared these with protein abundance data from 2D-gel electrophoresis 
experiments13, three mRNA expression dataset14-16 and information on codon bias.   

Wild type E. coli strain K12 N3433 was grown aerobically in MOPS, a minimal 
medium supplemented with Glucose (0.4%) . An overnight culture growing in 
exponential phase (i.e., 0.5 OD600) was used to inoculate MOPS media and grown to 
early logarithmic phase in 37°C (i.e., 0.3 OD600). Cells were harvested by centrifugation 
at 4,000g for 30 minutes at 4°C and washed three times with cold PBS buffer (0.137 mM 
NaCl, 2.7 mM KCl, 8.0 mM Na HPO , 1.5 mM KH PO , pH 7.5).  These conditions are 
identical to those used to produce the 2D-gel data

17

2 4 2 4
13. Tryptic peptides were prepared and 

analyzed with LC/LC/MS/MS as described in the main manuscript.  

We identified 504 proteins (FDR<5%), and calculated protein abundances using APEX 
with E. coli protein-specific O  values (Supplementary Dataset S2) normalizing by an 
estimated total number of 2.6x10  molecules in the cytoplasm 
(http://redpoll.pharmacy.ualberta.ca/CCDB/cgi-bin/STAT_NEW.cgi, and references 
therein).  The least abundant proteins are lhr and gph with fewer than 35 copies/cell, the 
most abundant proteins are tufA and tufB with >70,000 copies/cell.   

i
6

Similar to what we observed in yeast, the correlation with independently published 
protein abundance data using 2D-gel electrophoresis  is only moderate (R =0.21, 
R =0.47, N=210, Figure S8A).   However, this result is unlikely due to strong errors 

13 2

S
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exclusively in APEX measurements alone as APEX outperforms the 2D-gel data in the 
analyses described below.  

When comparing protein abundance measurements with mRNA abundance data from 
three individual studies using similar experimental conditions , we observe the same 
trends as for yeast, although with lower correlation coefficients.  Protein and mRNA 
abundances correlate in a power-law relationship with ~300 to ~600 protein/mRNA.  The 
correlation is better when comparing the average of three mRNA data sets vs. APEX 
alone (R =0.47, R =0.69, N=437, Figure 4 main text, Figure S8B), than when using the 
2D-gel data (R =0.21, Figure S8C) or the average of 2D-gel data and APEX (R =0.35).   

14-16

2
S

2 2

When correlating the mRNA abundance from individual datasets14-16 with APEX, the 
correlation coefficients are similar to that of the average mRNA abundance (see 
Supplementary Dataset S2): in contrast to the yeast data, averaging over several data 
sets does not improve the observed trends.  However, as discussed in the main text, the 
protein/mRNA ratios are log-normally distributed around their mean of 540 
proteins/mRNA suggesting a multiplicative error model (Figure 4).  

We also investigated the relationship between protein abundance and codon adaptation 
index (CAI)18 which often correlate with each other. Surprisingly, for APEX alone, the 
2D-gel data alone and the average of the mRNA data sets, the correlation coefficients are 
very low (R2=0.33, R2=0.30, R2=0.32, respectively; Figure S9A).  Similarly, while 
molecular weight and expression levels often correlate inversely, there is only a very 
weak such trend when comparing APEX-based protein abundance with gene length 
(R2=0.18) or the average mRNA abundance with gene length (R2=0.01)(Figure S9B). 

Overall, while the general trends are the same, the relationship between protein and 
mRNA measures appears weaker for E. coli than for yeast.    A definitive answer should 
await E. coli protein abundance data from other laboratories and techniques.  

1.8. Analysis of  synthetic protein mixtures 
As validation of APEX’ ability to estimate accurate protein concentrations, we analyzed 

several samples of purified proteins mixed in known concentrations. The proteins were 
trypsinized and analyzed by LC/MS/MS as described in the main text but without SCX 
fractionation. Oi values were calculated with the same classifier described previously, and 
APEX abundances were estimated, normalizing for the measured total protein 
concentration.  

The first sample contained 5 purified proteins from organisms other than E.coli 
(chicken egg white lysozyme, 277 pmol; bovine erythrocyte carbonic anhydrase, 77 
pmol; bovine serum albumin, 16 pmol; horse heart myoglobin, 4 pmol; bovine liver 
glutamate dehydrogenase, 1 pmol).  While the MS/MS sampling was relatively shallow 
in this single-injection experiment (54 total observations of peptides), APEX abundances 
are within just 2.5-fold of the correct concentration in all cases but one (median 2.3-fold 
difference)(Figure S23) and show a significant improvement over the case with flat 
priors (Oi = 1)(R2=0.90 vs. R2=0.48).  The one protein with substantially higher 
difference between expected and observed concentration is glutamate dehydrogenase 
which was added in extremely low concentration (1 pmol).  
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The second sample contained 10 purified proteins mixed in known concentrations from 
organisms other than yeast (chicken egg white ovalbumin 100 pmol; chicken egg white 
conalbumin 5 pmol; bovine liver catalase 20 pmol; bovine milk lactoperoxidase 2 pmol; 
bovine milk β-Casein 10 pmol; bovine milk β-lactoglobulin 500 pmol; hourse heart 
myoglobin 60 pmol; bovine erythrocyte carbonic anhydrase 200 pmol; human apo-
transferrin 1 pmol; bovine serum albumin 40 pmol). In an extension of the second 
experiment, we also added the 10-protein mixture to yeast protein cell lysate in 
concentration ratios 1:1 and 1:10.  The proteins were trypsinized and analyzed by 
LC/MS/MS as described in the main text. The 1735 MS/MS spectra obtained from a 
three-injection experiment were identified by comparison to a database of Saccharomyces 
cerevisiae proteins plus the 10 protein sequences. Oi values were calculated with the 
same classifier described previously, and APEX abundances were estimated, normalizing 
by the calculated total protein concentration.  

APEX performs very well and is robust to different experimental conditions (Figure 
S24, Table S6, 7). Independent of the concentration of yeast cell lysate, APEX-based 
protein concentrations correlate with the known protein concentrations with R2>0.82 at 
both linear and logarithmic scale (Figure 2A, Figure S24A-C).  The median fold change 
ranged from 1.8 to 2.2 (mean 1.9-2.4).  

APEX is also highly reproducible: the estimates of protein concentrations in different 
experiments (no lysate versus lysate 1:1) are virtually identical (Figure 2B and Figure 
S24D).  The known concentrations have been added according to what we expected to be 
natural concentrations, with as little as 1pmol.  In addition, there is no indication in 
Figure S24 that APEX measurements saturate at higher concentrations (500pmol), thus 
we expect our method to be easily scalable to more than 3 orders of magnitude.   

 

1.9. Comparison with existing methods of protein quantitation 
APEX-based protein concentrations are more accurate than those derived from existing 

methods, i.e. Protein Abundance Index (PAI)19 and the exponentially modified PAI 
(emPAI)20.  Table S5 summarizes the relationship between parameters used in the 
different methods. PAI is calculated as n_obs_uniq/n_exp_uniq where n_obs_uniq and 
n_exp_uniq are the number of experimentally observed (within the respective mass 
range) or the theoretically observable (expected) peptides per protein, respectively.  
emPAI is a modified version of PAI, calculated as emPAI = 10PAI – 1 (Table S5).  While 
PAI and emPAI employ unique peptide counts, APEX employs redundant peptide counts, 
allowing for an intrinsically larger dynamic range that does not saturate at 100% 
coverage of unique peptides.  Also, APEX uses the classifier Oi,, which is an estimate of 
the number of expected unique peptides as calculated from their probability of being 
observed (see Section  1.3, 1.4). 
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Table S5. Relationship between different parameters in MS experiments.  
 Observed peptide spectra 

from protein i 

Expected peptide spectra 

from protein i 

Unique n_obs_uniqi (used for PAI) n_exp_uniqi (used for PAI) 

Oi (corrected n_exp_uniqi; used for APEX) 

Redundant ni  (used for APEX) - 

 

We compared APEX’ performance to that of PAI and emPAI, using the synthetic mix 
of 10 proteins described in Section 1.8. The correlation coefficients (R2; linear-linear) 
between the true concentrations and the concentrations calculated by the three methods 
are summarized in Table S6.   

 

Table S6.  Comparison of APEX with PAI and emPAI.  

 APEX 

R2 (linear-
linear) 

PAI 

R2 (linear-
linear) 

emPAI 

R2 (linear-
linear) 

Synthetic 10 protein mix – without cell 
lysate 

0.88 0.41 0.42 

Synthetic 10 protein mix – with cell 
lysate 1:10 

0.88 0.34 0.34 

Synthetic 10 protein mix – with cell 
lysate 1:1 

0.84 0.38 0.38 

 
Table S7 and Figure S25 provide a more detailed comparison of concentrations 

estimated by APEX, PAI and emPAI in the protein mixture without cell lysate added.  
The other two methods, PAI19  and emPAI20, perform well in their estimation of protein 
abundance, but show saturation at higher protein concentrations.  The mean, median and 
maximum fold difference to the true (injected) protein concentrations is lower in APEX 
than in the other two methods.   
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Table S7.  Example comparison  (10 protein mix without lysate) of APEX, PAI and 
emPAI  

 Injected 
concentration 

(pmol) 

APEX 

(pmol) 

PAI 

(pmol) 

emPAI 

(pmol) 

Apotransferrin  1.0 4.2 27.2 24.5

Lactoperoxidase 2.0 6.3 80.8 77.5

Conalbumin 5.0 17.8 58.2 54.4

β-casein 10.0 20.7 50.1 46.3

Catalase 20.0 28.8 100.2 98.3

Albumin 40.0 20.6 61.0 57.1

Myoglobin 60.0 159.6 132.3 135.0

Ovalbumin 100.0 149.6 116.0 116.0

Carbonic anhydrase 200.0 97.5 172.2 184.4

 β-Lactoglobulin 500.0 432.9 140.2 144.5

Mean fold change  2.4 9.9 9.3 
Median fold change  2.1 4.3 4.0 
Minimum fold change  1.2 1.2 1.1
Maximum fold change  4.2 40.4 38.7
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2. Characteristics of yeast protein expression levels 

2.1. Comparison with other protein properties 
Yeast protein expression levels are known to correlate with several other properties of 

proteins (Figure S10).  In this section, we verify that APEX-derived measurements show 
the appropriate trends.  Each plot shows comparisons involving 454 proteins identified 
from yeast growing in rich medium, with a false positive protein identification rate of 
~5% (ProteinProphet1 pi ≥ 0.78).  First, protein concentrations measured by APEX are 
inversely correlated (Rs = -0.67, R2 = 0.28) with protein molecular weight, as noted for 
measurements of protein expression by other techniques, e.g. see Ghaemmaghami et al. 6 
or Coghlan et al. 21. Second, yeast protein concentrations, measured by APEX, are 
positively correlated  with protein codon adaptation indices (Rs = 0.79, R2 = 0.70)18 and 
with codon bias (Rs = 0.80, R2 = 0.69), again as noted for measurements by other 
techniques6, 7, 21.  

Yeast protein expression levels, as measured by APEX, show no significant correlation 
with protein isoelectric point (pI), hydrophobicity (Gravy22 scores), or aromaticity 
(frequency of the aromatic amino acids Phe, Tyr, and Trp)(Figure S11), implying both 
that shotgun proteomics/APEX-based quantitation shows no systematic sampling bias for 
these properties and that steady state protein expression levels are largely independent of 
these properties. 

 

2.2. Comparison with estimated protein synthesis rates 
We find that absolute protein expression levels are well-correlated with estimates of 

translation rates derived from association of mRNAs with polysomes23 (R2 = 0.65), and 
partially correlated with transcription rates estimated from measurements of mRNA half-
life10 (R2 = 0.31) (Figure S12).  

We find an even stronger correlation (R2 = 0.73) between the measured protein 
abundances (average of at least two of three measurements and the protein production 
rates estimated by multiplying relative translational levels by the number of copies of 
each mRNA23, indicating excellent agreement between observed protein levels and those 
predicted from translation alone. This correlation suggests that 73% of the variance in 
steady state protein levels can be explained by variation in protein production rates, with 
the remainder explained by experimental errors, protein degradation rate variation, and 
other factors. 

 

2.3. Differential protein expression in yeast rich vs. minimal medium 
Absolute protein expression measurements can be applied to a variety of biological 

questions.  In the main text, we describe how MS-based measurements are able to extract 
proteins that are differentially expressed in yeast rich versus minimal medium.   
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This procedure is highly sensitive. It can detect significant changes (|Z|>2.58, 99% 
confidence) in protein expression that are less than 1.2-fold in highly abundant proteins 
(CDC19, EFT2, ADH1, PGK1) up to ~60- or even ~190-fold changes (SSB1, GDH1), or 
involve fewer than 10,000 molecules/cell expression difference (PEP1, SCP160, GLT1).   
Many peptides are measured in numbers large enough to enable sensitive detection of 
only small changes in expression: many of the significant fold-changes are less than 10-
fold (Figure S13).  

Note that while expression differences are most meaningful to discuss in terms of 
protein abundances (Figure 3, main text), we actually calculated the Z-score based on 
peptides, as illustrated in Figure S14. Figure S14A shows significant proteins in their 
peptide abundance (ni counts) in rich vs. minimal medium, and the 5% confidence 
intervals. Figure S14B shows the same significantly differently expressed proteins, but in 
their protein abundances (APEX-based counts of molecules/cell). The conversion of 
peptide counts ni to APEX-based protein abundances involves the ProteinProphet score 
pi, the classifier Oi, and a constant describing the total number of molecules per cell and 
the total expected number of peptides (see main text, derivation of APEX).  Thus, it can 
happen that two proteins with very similar abundances have different significance of their 
differential expression, as the peptide counts and other parameters vary from protein to 
protein (e.g. COQ6 and LYS7).  

The sensitivity of MS-based data in measuring changes in protein expression is 
confirmed when using an independent data set published by Zybailov et al. 24.  In order to 
use these authors’ LTQ MS data to calculate protein abundances with the APEX method, 
we should ideally re-calculate the Oi values for the LTQ MS technology used by 
Zybailov et al. 24. However, comparison of the significantly up- or down-regulated 
proteins (|Z|>2.58; 99% confidence) is still valid as the Z-score does not rely on use of 
the classifier Oi.  

Protein abundance measurements from the two datasets both capture differences known 
for cells growing in different media (Figure S15). The overall correlation between Z-
scores of differentially expressed proteins in our (Lu et al.) and Zybailov et al.’s  data is 
moderate (R2=0.28) and reasonable for differentially expressed  proteins (R2=0.58 for 
|Z|>2.58). There is a significant overlap in proteins up-regulated in minimal medium 
(p<5e-12), and in proteins up regulated rich medium (p<3e-2). For example, MET6 is the 
single most strongly up-regulated protein in both YMD datasets, with a 10- to 11-fold 
increase in expression from ~48-75,000 copies to ~550-758,000 copies/cell. Proteins in 
the overlap, i.e. that are up-regulated in minimal medium in both the Lu and Zybailov 
dataset, are significantly enriched for targets of the transcription factor GCN425 (14/30; 
p<1.1e-8) which is expected for amino acid starvation response.  

The differential expression of some proteins is specific to either the Lu or Zybailov 
dataset (Figure S15), and such differences can be explained by the genetic background of 
the two yeast strains.  Lu-specific proteins that are up-regulated in minimal medium are 
enriched for proteins of purine synthesis (ADE-genes), i.e. targets of BAS1 (8 of 37 
known targets26, p<1.3e-8).  Up-regulation of genes of purine (and also histidine) 
biosynthesis may be caused by an imbalance in nucleotide metabolism due to the URA3 
marker gene in the strain. In contrast, Zybailov set-specific genes up-regulated in 
minimal medium are involved in glucose metabolism, possibly caused by deletion of 
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galactose-transporter gal2, maltose/mellibiose metabolism genes mal and mel in 
Zybailov‘s yeast strain. The proteins are also enriched for glycosylation and glucoprotein 
metabolism, possibly caused by deletion of flo1 and flo8-1. Five BAS1 targets, i.e. 
proteins of purine synthesis, and four HAP1 targets26, i.e. proteins of anaerobic growth, 
including several ERG-genes that are part of ergosterol biosynthesis, are down-regulated 
in minimal medium in Zybailov’s data (p<6.4e-4 and p<0.08).  The latter case of 
differential expression may be due to mutation in the hap1 gene in the yeast strain used 
for Zybailov’s data.  

 

2.4. Differential protein expression in mouse T-lymphoma cells 
Protein abundance measurements using mass spectrometry are scalable and can easily 

be applied to higher eukaryotes, as we also demonstrate for mouse T-lymphoma cells.   

Approximately 3x107 mouse T-lymphoma BW5147 cells were harvested, washed in 
PBS, and resuspended in 5ml buffer (10mM Hepes pH7.9, 1.5 mM MgCl2, 10mM KCl, 
1mM DTT, protease inhibitors) for 10 min. Cells were pelleted (1,000g for 10 min) and 
resuspended in 2ml of the same buffer. Cells were then lysed using 10 strokes in a 
homogenizer and nuclei were pelleted (1,000g for 10 min), the supernatant was retained 
as the cytoplasmic protein sample. The wash and centrifugation steps were repeated once, 
centrifuging at 30,000g for 20 min. Nuclei were resuspended in 1ml buffer (20 mM 
Hepes pH7.9, 25% glycerol 0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 1 mM DTT, 
protease inhibitors), and homogenized (~30 strokes), and stirred on a magnetic stirrer for 
30-60 min. The lysed nuclei were centrifuged at 30,000g for 20 min) and the supernatant 
dialyzed against 150 volumes of buffer (20mM Hepes pH7.9, 20% glycerol, 100mMKCl, 
0.2mM EDTA, 1mM DTT, protease inhibitors) for 3-4 hours. Nuclear extracts were 
centrifuged (30,000g for 20 min) and the supernatants collected for analysis. 

The protein mixtures were diluted in digestion buffer (50mM Tris HCL pH8.0, 1.0M 
Urea, 2.0mM CaCl2), trypsin digested, and analyzed by LC/LC/MS/MS as described in 
the main text. Three sequential LC/LC/MS/MS analyses were performed, and the 
fragmentation spectra were analyzed using the program TurboSequest/ BioWorks 3.1 and 
ProteinProphet1.  For protein identification, we downloaded the database of 25,371 
mouse (Mus musculus) proteins from Entrez Genome (http://www.ncbi.nih.nlm.gov).  

In total, we identified 1391 proteins (Supplementary Dataset S3) across all 
experiments with a false identification rate of ≤5%. All proteins were then assigned a Z-
score based on the frequency of total peptides identified per protein in the nuclear and 
cytosolic protein samples; the distribution of Z-scores is shown in Figure S16. Proteins 
with Z > 1.96 or Z < -1.96 are significantly enriched in the nucleus or cytoplasm, 
respectively (95% confidence). Of the mouse proteins identified, 180 and 192 proteins 
are known to be localized to nucleus and cytoplasm, respectively, as annotated by the 
DAVID webserver at http://david.niaid.nih.gov/david/version2/index.htm). Figure S16 
shows that the higher the Z value, the higher the fraction of the identified proteins known 
to be nuclear proteins. Thus, proteins of the two different cellular localizations can be 
identified using our approach, clearly distinguishing nuclear proteins from contaminating 
cytoplasmic proteins.  
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The identified nuclear proteins include histone deacetylase, DNA helicase, DNA 
methyl-transferase, HMGB2, radixin, methyl-CpG binding protein, acidic nuclear 
phosphoprotein 32 family member B, tumor rejection antigen gp96, and TBP-interacting 
protein. Importantly, we also identified cell division cycle 2 homolog A, transcription 
factor Swi, and transcription elongation factor. In addition, we detected abundant HnRNP 
proteins (A3, L, M, H2, R, I, U, K, H1), splicing factor 3b, snRNP (A, E, U2, B, D1), 
ubiquitin-conjugating enzyme, and valyl-tRNA synthetase 2. These results confirm that 
even low abundance proteins such as transcription factors can successfully be identified 
by shotgun proteomics of the nucleus. 

Translation initiation factor 5A and translation elongation factor 1 were observed to be 
abundant in both nucleus and cytoplasm. Some cytoplasmic proteins were also identified 
in nuclear sample, and this may be due to cross-contamination or that certain proteins are 
present in both nucleus and cytoplasmic pools, reflecting their ability to translocate 
between these compartments. These proteins are ELAV (embryonic lethal abnormal 
vision), proliferating cell nuclear antigen, endoplasmic reticulum protein Pdia3, zinc-
finger proteins, matrin, septin, actin, protein phosphatase (Ppp1ca, Ppp2cb, Anp32b, 
Pnkp), cytochrome C, protein disulfide isomerase-related protein, vemintin, golgi coil-
coiled protein Gcc1, heat shock proteins, dynein, and spectrin. 
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3. Correlation of yeast protein and mRNA levels 

3.1. Comparisons with mRNA levels 
Protein expression levels estimated by APEX are well correlated with mRNA 

expression levels from Affymetrix microarrays8, SAGE9, and dual channel microarrays 
with genomic DNA reference10, as well as with the average of at least two mRNA 
measurements, over approx. 3-4 orders of magnitude of protein concentration and 3 of 
mRNA concentration (Figure S17).  

The correlation between protein and mRNA levels is also confirmed when we examine 
the high-confidence set of 58 proteins which have less than 50% relative standard 
deviation across the measurements of protein and mRNA abundance (Figure S18). 
Protein and mRNA levels correlate with R2=0.77 in a power-law relationship.  

 

3.2. Analysis of protein per mRNA ratios 
To ensure that the log-normal relationship of protein to mRNA identified was not an 

effect of averaging protein expression levels from different platforms, we performed the 
same analysis for single techniques. Each produces comparable results, as shown here for 
a comparison of Western6 and APEX protein expression levels to the average of two 
measures of mRNA levels (DNA microarrays8 and SAGE9) (Figure S19). As described 
in the paper, we calculated the logarithm of the ratio of each protein’s abundance divided 
by its corresponding mRNA levels, and then calculated the histogram of these values and 
the fit to a normal distribution.  Each distribution is well described by a log-normal curve 
(R2 = 0.93 and 0.94, respectively). 

 

3.3. Unusual protein per mRNA ratios 
A comparison of the unusual protein per mRNA ratios with ribosomal loading of the 

corresponding transcripts, using RNA-polysome association data published by Arava et 
al. 23, 27, indicates that the under-translated protein RPS21A exhibits significantly lower 
association with polysomes than the over-translated protein ADH2 (Figure S20).  
RPS21A is one of the few S. cerevisiae genes with introns28, a factor that may contribute 
to its lower availability to ribosomes, or that at least might lower the effective mature 
mRNA concentration relative to the total quantity of RPS21A mRNA. 

 

3.4. Comparison with protein properties 
In attempting to explain the variance of protein per mRNA ratios, we examined trends 

likely to control levels of translation (Figure S21).  In particular, measures of codon 
choice (CAI, codon bias, and frequency of optimal codons) are largely uncorrelated with 
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the ratio of protein to mRNA. Note that in comparison, all these measures are correlated 
with the protein concentration, as discussed for APEX measurements above and shown 
for average protein abundance in Figure S21. As explained in the main text, molecular 
weight correlates both with protein concentration and, to a far lesser extent, with the 
protein/mRNA ratio.  

 

3.5. Comparison with sequence characteristics 
We analyzed the set of 331 genes with at least two measurements for both protein and 

mRNA levels for sequence characteristics that relate to protein abundance and to the 
protein per mRNA ratio (Figure S22).  To do so, we compared the 50 most abundant 
proteins to the 50 least abundant proteins, and the 50 proteins with highest protein/mRNA 
ratios to those 50 with the lowest ratios.   

The PEST sequence is known to be a ubiquitinylation signal that can trigger protein 
degradation29.  Indeed, we find that the 50 most abundant proteins have a slightly lower 
fraction of PEST residues than the 50 least abundant proteins; this is true to a much lesser 
extent for the protein/mRNA ratios.   

Further, it has been observed that while some amino acids at the N-terminal end of 
proteins have destabilizing effects (RKFLWHAQY), other amino acids have stabilizing 
effects on proteins (CASTGVM)30.  As discussed in the main text, we can generally 
confirm these observations: there are significant biases with respect to amino acid choice 
at the N-terminal end of highly abundant proteins or those with a high protein/mRNA 
ratio.  There is one obvious exception: leucine is overrepresented in both highly abundant 
proteins and those with a high protein/mRNA ratio, but it is known to be destabilizing30.  

We observe similar results when counting amino acids in a sliding window (not shown).   
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Figure S1. Yeast. Error model for protein identification in minimal (A, YMD) and rich (B,
YPD) medium using ProteinProphet [Nesvizhskii, Anal Chem 2003].

A. YMD medium

B. YPD medium



Figure S2.  Yeast. Analysis of 555 proteins identified using 10% FDR for yeast growing
in rich medium (YPD).

A.

B.

C.



Figure S3.  Yeast. Reproducibility of MS-based protein abundance measurements grown
in YPD medium (for YMD see main text).
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Figure S4. Classifier training.  Most of the peptides are not observed. For those peptides
that are observed, and those that are not observed, the classifier predicts  their
occurrence with 86% accuracy (A, B).  Distribution of O_i values and number of unique
expected peptides for all yeast proteins (C).

A. B.

C. Yeast proteins,
     distribution of Oi



Figure S5. Yeast. APEX-based protein abundance for cells grown in rich medium (YPD).
APEX correlates better with other measurements of protein abundance than these data
sets correlate with each other.
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Figure S6. Yeast.  APEX-based protein abundance for cells grown in minimal medium
(YMD). (A) all proteins in YMD, N=290; (B) YMD-specific proteins (not observed in YPD),
N=102. APEX versus GFP-labeled protein abundance: Rs=0.64 for (A) and (B).

A.

B.



Figure S7A. Yeast. Normality test  for redundant peptide counts n_i. High abundance
proteins:Each set contains 6 obs of fi for a given protein from 6 YMD datasets.
Distributions with p>0.05 are normal under the Shapiro-Wilk test (95% confidence)
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Figure S7B. Yeast. Normality test  for redundant peptide counts n_i. Low abundance
proteins:Each set contains 6 obs of fi for a given protein from 6 YMD datasets.  Distributions
with p>0.05 are normal under the Shapiro-Wilk test (95% confidence)



Figure S8. E.coli. APEX-based protein abundance vs 2D-gel based protein abundance (A).
The black line indicates the diagonal. For comparison, APEX-based protein abundance and
2Dgel based protein abundance vs. average of at least 2 of 3 measurements of mRNA (B,
C)

A.

B.

C.



Figure S9. E.coli. APEX-based protein abundance, 2D-gel derived protein abundance ,
and mRNA abundance vs CAI (A) and gene length (B).
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Figure S10. Yeast. APEX-based protein abundances vs. molecular weight, FOP, CAI,
codon bias.



Figure S11. Yeast. APEX-based protein abundances vs. pI, hydrophobicity,
aromaticity.



Figure S12. Yeast. Average protein abundance vs. parameters of transcriptional and
translational regulation (transcription, translation and protein production rates).
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Figure S13A,B. Yeast.  Peptide count distribution in YMD and YPD (A).  Distribution of
fold change between YPD and YMD medium (B).
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Figure S13C,D. Yeast.  (C) Significance (Z-score) versus fold change (YPD vs. YMD). (D) Fold change versus
absolute change, only significant (99% confidence) values and only those with observations both in YPD and YMD
medium are plotted. |Z|>2.58 denotes 99% confidence.
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Figure S14. Yeast. Differential expression analysis. Z-score test (based on peptides) -
significant data points plotted with respect to peptide and protein counts.
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Figure S15. Yeast. Differential expression analysis. Comparison with Zybailov et al.’s
data on differential expression in YPD vs. YMD.    |Z|>2.58.

A. up-regulated in YMD (minimal) medium (Z>2.58)

B. up-regulated YPD (rich) medium (Z<-2.58)
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Figure S16. Mouse. Differential protein expression analysis in mouse T-lymphocytes.
Known nuclear and cytoplasmic proteins are enriched in the respective sub-cellular
fractions (measured by Z-scores)(1391 proteins).



Figure S17. Yeast .  APEX-based protein abundances vs. three individual mRNA
measurements and their average.



Figure S18. Yeast. High-confidence protein data set. The correlation between protein
and mRNA abundance is conserved for a high-confidence data set (N=58).

 



Figure S19.Yeast.  Protein per mRNA ratios are log-normally distributed, even for
individual data sets.
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Figure S20. Yeast. Ribosomal occupancy for two proteins with extreme protein per
mRNA ratios [Arava PNAS 2003; Arava Nucl. Acids Res. 2005].
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Figure S21. Yeast. Absolute protein abundance (left) correlates with some protein
characteristics, while this is not the case for the protein per mRNA ratio (right), except for
molecular weight.

 

R2=0.02

R2=0.01

R2=0.01



Figure S22.  Yeast. Sequence analysis.  proteins of high abundance and/or high protein
per mRNA ratios have a slightly biased amino acid composition.

 



Figure S23.  Synthetic 5 protein mixture.  APEX protein concentrations vs. known abundances (A,C) and 
APEX calculated with flat priors (Oi = 1) vs. known abundances (B,D), plotted as linear (A,B) and log-
transformed (C,D) abundances. 
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Figure S24. Analysis of synthetic mixture of 10 proteins of known concentrations, 
without lysate (A.) or with yeast cell lysate added in ratios 1:10 (B.) or 1:1 (C.).

Graphs A.-C. compare the injected concentrations with APEX-based estimates, 
graph D. compares APEX-based estimates from A. (no lysate) with C. (lysate 1:1). 
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Figure S25. Analysis of synthetic mixture of 10 proteins of known concentrations, 
without lysate; comparison of APEX-based estimates with other methods.   

O
b

se
rv

e
d

 p
ro

te
in

 a
b

u
n

d
a
n

ce
 

(p
m

o
l,

 l
o

g
 s

ca
le

)


	Supplementary Material:  
	An estimate of relative contributions of transcriptional and translational regulation by absolute protein expression profiling 
	Abbreviations 
	Contents 
	1. Establishing and validating APEX 
	1.1. Confidence in peptide and protein identification 
	1.2. Reproducibility 
	Table S1. Reproducibility: Correlation coefficients (R2-values) for replicate experiments. 
	1.3. Training the classifier for learning Oi 
	Table S2. Classifier performance 
	Table S3. Performance statistics 

	1.4. Performance of the classifier for learning Oi  
	Tables S4.  Oi significantly improves estimates of protein abundance.  R2-values of correlations of APEX and peptide counting. 

	1.5. Validation of APEX-based yeast protein abundances with other large-scale measurements 
	1.6. Normal distribution of the number of peptides per protein 
	1.7. Analysis of E. coli protein abundance data.  
	1.8. Analysis of  synthetic protein mixtures 
	1.9. Comparison with existing methods of protein quantitation 
	Table S5. Relationship between different parameters in MS experiments.  
	Table S6.  Comparison of APEX with PAI and emPAI. 
	Table S7.  Example comparison  (10 protein mix without lysate) of APEX, PAI and emPAI 




	2. Characteristics of yeast protein expression levels 
	2.1. Comparison with other protein properties 
	2.2. Comparison with estimated protein synthesis rates 
	2.3. Differential protein expression in yeast rich vs. minimal medium 
	2.4. Differential protein expression in mouse T-lymphoma cells 

	3. Correlation of yeast protein and mRNA levels 
	3.1. Comparisons with mRNA levels 
	3.2. Analysis of protein per mRNA ratios 
	3.3. Unusual protein per mRNA ratios 
	3.4. Comparison with protein properties 
	3.5. Comparison with sequence characteristics 


	 References 

	6protfigurefinal_pmol.pdf
	Figure S23.  Synthetic 5 protein mixture.  APEX protein concentrations vs. known abundances (A,C) and APEX calculated with fla


