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Supplementary Figure 1
Only select fluorophores exhibit fluorescence stability toward Edman reagents.

(A) Fluorophores (spanning four fluorescent channels, denoted by bar colors) were tested for their percentage change in fluorescence intensity in
PBS buffer, following a 24 hour incubation with TFA or pyridine/PITC (shown as pyridine). Dyes marked with boxes exhibited only moderate
changes (<20%) in fluorescence. The data are presented as mean across replicates, shown, with error +/- s.d. where n > 3. (B) Images of fluorophore
coupled Tentagel beads illustrate fluorescence changes by Edman reagents. In the case of BODIPY-FL (left panels), the fluorescence intensity
decreases with TFA incubation, while there is a spectral redshift with pyridine incubation. In contrast, Atto647N (right panels) is stable in both color
and intensity to both conditions. Scale bar, 200um.
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Adaptation of flow-cell, TIRF-microscopy, and computer-controlled fluidic system for Edman sequencing.

We modified a Bioptechs FCS2 perfusion chamber (A) for Edman sequencing by substituting the silicone gaskets as indicated by red arrows, with
perfluoroelastomer gaskets resistant to the Edman chemistry. (B) Eleven different polymeric materials sourced through a number of vendors were cut
into 2cm x 1cm strips and tested for inertness following 24 hours of TFA incubation. Kalrez-0040 showed the least change in volume, excellent
inertness to pyridine/PITC, and good compressibility (shore durometer A = 70); we used it for all subsequent experiments. Teflon
(polytetrafluoroethylene) gaskets, although suitably inert, were not compressible and caused leaks when used in the perfusion chamber. Image of
flow chamber is adapted from vendor (Bioptechs) supplied image. (C) Edman sequencing was implemented using a syringe pump (3-way valve
configuration) and a 10-port multi-position valve system automated to exchange solvents through polytetrafluoroethylene tubing into the imaging

perfusion chamber attached to the stage of a TIRF microscope.
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Bead-based assays confirm bulk Edman sequencing of fluorescently labeled amino acids.

(A) Specific binding of TMR to functionalized Tentagel beads occurs at the periphery and density can be measured by image processing. Peripheral
bead fluorescence intensities were calculated by computing the area under the fluorescence intensity radial distribution normalized relative to a
negative control beads bound non-specifically with free TMR lacking the NHS group to control for background fluorescence. (B) Edman degradation
can be used to determine the positional information of the fluorescently labeled lysine residues of synthetic peptides using bulk fluorescence
measurements. Bar charts indicate the normalized average of the fluorescence intensity per bead +/- s.d. across image fields. Raw fluorescence

intensities and field counts are reported in Supplementary File 1.
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Supplementary Figure 4

Nitrogen-purged methanol with Trolox significantly decreases photobleaching and fluorophore blinking.

Fluorescence loss is greatly reduced for the TMR labeled peptide, (fmoc)-K*A, under constant laser illumination in nitrogen purged 1 mM Trolox in
methanol (top, green, curve, n=2802) versus imaging in methanol alone (bottom, red, curve, n=5942), imaged with consecutive 0.5 sec frames. Solid
lines represent fits of each data set to a single exponential. Imaging in methanol/Trolox resulted in a t;/, of approx. 105 seconds. * indicates TMR
conjugated to lysine. Solid lines represent fits to single exponential decay functions.
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The aminosilane surface is stable to Edman chemistry.
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wash buffer and methanol Edman
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After 2nd
Edman

cycle
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(A) Schematic of assay. A layer of APTES was covalently formed on a glass surface by siloxane bond formation (-Si-O-Si-). (B) Counts of single
Atto647N-NHS fluorophores (plotted as mean count, shown above, per microscopy field +/- s.d.), immobilized via a stable amide linkage to the
silane layer, remain unchanged with repeated experimental cycles of Edman chemistry and after washes with wash buffer.
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Supplementary Figure 6

Image-processing pipeline.

Overview of computational analysis to (1) identify fluorescent peptides as peaks in TIRF images, (2) align imaged peaks across consecutive Edman
cycles, (3) identify the cycle at which each dye is removed, retaining “well-behaved” peptides. Dye positions are assigned using a maximum
likelihood statistical model (see Online Methods), based on the empirical observation (4) that fluorescence intensities for one dye are log-normally
distributed with a (log-normal) mean u and standard deviation o. Intensities for higher numbers of dyes are well-fit by log-normals with mean u +
In(dye count) — dye-dye interaction factor Q. , and standard deviation o (Supplementary Fig. 9). (5) For each peptide, the number of dyes present
after each Edman cycle is inferred by fitting observed intensities to each of the possible monotonically decreasing step functions (for up to 5 dyes),
selecting the function maximizing a quality of fit scored using the lognormal probability density functions. (6) Counts of individual molecules
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Supplementary Figure 7
Image-processing summary.
Fluorescent spots were identified using a Gaussian peak fitting algorithm, then images were aligned between experimental cycles based on positions

of fiducial markers. Each spot’s position was extracted from the aligned images, with the spot categorized in each frame as either ON or OFF
depending on the presence of a well-fitting peak. Spot intensities in each frame were then measured using Mexican hat photometry.
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The sequence positions of multiple amino acid types can be determined by labeling each type with a distinct dye.

The histogram displays counts of individual molecules of the doubly labeled peptide GK*AGAGAC'AGAYG (summarizing data from 400 image
fields) indicating the Edman cycle numbers at which the two dyes were removed. An example of an individual doubly-labeled molecule is shown in
the extracted TIRF images at bottom right.  indicates Janelia Fluor 549 conjugated to lysine and ¢ indicates Atto647N conjugated to cysteine.
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Supplementary Figure 9
Measurement and modeling of fluorophore intensities.

(A) Fluorophore intensities follow a lognormal model. Photometries in the last frame before a dye labeled peptide permanently turns OFF
predominantly represent the intensity of a single fluorophore, regardless of how many dyes a peptide initially started with. The distribution of these
photometries is consistently lognormal across multiple experiments as shown by the Q-Q plot. Each point indicates a percentile of the lognormal
photometry histogram of GK*AGAG, GC*AGC'AGAG, N-Acetyl-GK*AGAG, N-Acetyl-GC*AGC'AGAG, QC’C'TSIC*SLYN with n=97137,
n=273411, n=72905, n=155097 peptides, respectively. * indicates TMR conjugated to lysine eindicates Atto647N conjugated to cysteine. (B, C)
Statistical models for photometry of multiple dyes were refined using forward simulation to optimize the values of the lognormal shape parameter o*
and dye-dye interaction factor Q.. Photometry distributions of peptides with the observed (blue) and simulated (orange) dye sequence:
[2,2,2,2,2,1,1,1,0,0,0,0] for (B) a poor parameter choice, showing results of an overestimated o* and underestimated Q. , and for (C) the optimized
values of o* =0.20 and Q. =0.30. Data shown for the initial condition, 3 mock cycles, and 4 Edman cycles, n=273411 peptides. The remaining
cycles, with 0 dyes, are omitted.

Nature Biotechnology: doi:10.1038/nbt.4278



Supplementary Figure 10
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Monte Carlo simulation of fluorosequencing closely matches the experimentally observed error distribution.
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(A) Experimental sequence histograms of GC*'AGC*AGAG (A, left panel) and its N-acetylated control (A, middle panel) replotted from Fig. 4B for
easy comparison. (B) Simulated fluorosequencing of GC*AGC*AGAG with errors (B, right panel) and its N-acetylated control (B, middle panel)
result in observed (simulated) signal (B, left panel) that closely matches observed experimental data in A. eindicates Atto647N conjugated to
cysteine.
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Expected m/z: 1111.59 (100.0%), 1111.09 (77.0%), 1112.10 (32.9%), 1112.60 (22.1%), 1113.10 (8.1%)
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Supplementary Figure 11
High-resolution mass spectrometry confirmation of the purity of the doubly labeled peptide GC*AGC'AGAG.

(A) Peptide structure with expected mass/charge (m/z) for its +2 charge state and top 5 isotopic variants. Single dye conjugates have expected m/z
values of 1493.73 (+1 charge state). (B) High resolution mass spectrometry of the HPLC purified peptide confirms the presence of two Atto647N
dyes. ¢indicates Atto647N conjugated to cysteine.
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Supplementary Figure 12
Effects of peptide composition and length on Edman cleavage efficiencies.

(A) To better understand the range of Edman efficiency across amino acids we sequenced two synthetic peptides, differing only by the first amino
acid, AK'AGAGRYG and PK'AGAGRYG. These were chosen for their historic ease, in the case of alanine, or difficulty, in the case of proline, of
Edman sequencing®. Experiments were performed in triplicate (bar chart represents the mean +/- s,d. across experiments), sequencing both peptides
simultaneously in a multiplexed flow cell, and results were averaged and compared with simulation to determine error rates. Error rates of 3% dye
destruction, 30% surface degradation were identical across the two samples, while Edman cleavage efficiency was 95% and 91% for the alanine and
proline samples respectively. (B) Consistent with the higher Edman cleavage efficiencies observed for alanine, a peptide composed of glycine/alanine
repeats (GAGAGAGAGC ARRYRRG) with a fluorophore at the 10 position sequenced efficiently (top histogram, 400 fields) and was well fit by
simulations with a 97% Edman cleavage efficiency, 3% dye destruction, and 4% surface degradation rate (bottom histogram). (Note that “dud" dye
rates cannot be determined through simulation for singly labeled peptides.) { indicates Atto647 conjugated to lysine and eindicates Atto647N
conjugated to cysteine.
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Supplementary Figure 13

Full one- and two-dye fluorosequencing histograms for peptides in Fig. 5a and Fig. 5d confirm signal for the expected sequence patterns.
(A) Histograms tallying counts of molecules sequenced from a mixture of GC'AGC*AGAG with GAGC*GAC*GAGAD (left panel, 98 fields) and

GAC'C*AGAAD with GAGC'GAC'GAGAD (right panel, 49 fields) (B) Histograms of sequenced peptide RK'TTRK'M, 49 fields. « indicates
Atto647N conjugated to cysteine and 1 indicates Atto647N coupled to lysine residues.
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Supplementary Figure 14

One-, two-, and three-dye fluorosequencing histograms for insulin peptides (Fig. 5b) confirm signal for the expected sequence patterns.
Plotted are the background-adjusted one, two, and three dye histograms for insulin A2 chain (QC*C'TSIC'SLYNE, measured across 100 image

fields), A3 chain (NYC'N, 120 fields), B1 chain (FVNQHLC*GSHLVE, 72 fields), and B2 chain (ALYLVC'GE, 100 fields), respectively. ¢
indicates Atto647N conjugated to cysteine.
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Coverage of human proteins with two label types and expected errors
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Supplementary Figure 15

Modeling the expected effects of experimentally determined error rates on protein identification.

The effects of experimental errors were modeled on the expected identification rates of sets of human proteins in the subcellular compartments
examined in Fig. 1C. Each curve plots coverage of uniquely identifiable proteins, as a function of Edman cycles performed, considering the scenario
of labeling only cysteines and lysines on peptides formed by GluC proteolysis, which cleaves after glutamate or aspartate, when considering error
rates of 94% Edman cleavage efficiency, 5% dye destruction, 5% surface degradation, and 7% “dud” dyes. Modeling was performed using the Monte
Carlo procedure of ref. 6. as described in Online Methods. Application to more complex samples in the future could potentially be achieved through
reduction of these errors, introduction of additional amino-acid-specific labels, or a combination. The consecutive covalent labeling of Cys, Lys,
Asp/Glu, Trp, and the amino terminus of model peptides has been reported™, so there is no intrinsic barrier to extending the approach to additional

amino acid types, provided the labels can be independently distinguished.
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