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Supplementary Table 2 The performance of seven PPI prediction methods (M1 to M7), tested here for 

yeast and human protein-protein interactions, differs significantly for the distinct test classes (C1 – C3). Also 

shown are the “typical” cross-validated predictive performances (CV). The performance of each algorithm is 

summarized as the average AUROC (area under the receiver operating characteristic curve) ± its standard 

deviation across 40 experiments and the corresponding average AUPRC (area under the precision-recall 

curve) ± its standard deviation. 

Yeast PPI data 

 AUROC AUPRC 

 CV C1 C2 C3 CV C1 C2 C3 

M1 0.82±0.01 0.82±0.01 0.61±0.02 0.58±0.03 0.83±0.02 0.83±0.01 0.62±0.02 0.57±0.03 

M2 0.83±0.01 0.84±0.01 0.60±0.02 0.59±0.03 0.84±0.02 0.84±0.01 0.61±0.02 0.58±0.03 

M3 0.61±0.01 0.61±0.01 0.53±0.01 0.50±0.01 0.65±0.02 0.65±0.02 0.56±0.03 0.53±0.07 

M4 0.76±0.02 0.76±0.02 0.57±0.02 0.54±0.03 0.76±0.02 0.76±0.02 0.58±0.02 0.54±0.03 

M5 0.80±0.02 0.80±0.01 0.58±0.01 0.55±0.02 0.78±0.02 0.78±0.01 0.57±0.02 0.54±0.02 

M6 0.75±0.02 0.75±0.02 0.59±0.04 0.52±0.04 0.75±0.02 0.76±0.02 0.60±0.05 0.47±0.07 

M7 0.58±0.02 0.58±0.01 0.54±0.02 0.52±0.03 0.60±0.02 0.60±0.02 0.55±0.02 0.53±0.02 

Human PPI data 

 AUROC AUPRC 

 CV C1 C2 C3 CV C1 C2 C3 

M1 0.81±0.01 0.81±0.01 0.61±0.01 0.58±0.03 0.82±0.01 0.82±0.01 0.60±0.01 0.57±0.03 

M2 0.85±0.01 0.85±0.01 0.60±0.01 0.58±0.02 0.85±0.01 0.85±0.01 0.60±0.01 0.56±0.02 

M3 0.63±0.01 0.64±0.01 0.55±0.01 0.50±0.00 0.67±0.01 0.67±0.01 0.57±0.02 0.52±0.05 

M4 0.77±0.01 0.77±0.01 0.57±0.02 0.53±0.02 0.77±0.01 0.77±0.01 0.56±0.01 0.53±0.02 

M5 0.81±0.01 0.81±0.01 0.59±0.01 0.54±0.02 0.82±0.01 0.82±0.01 0.59±0.01 0.54±0.02 

M6 0.76±0.01 0.77±0.01 0.64±0.01 0.59±0.02 0.79±0.01 0.79±0.01 0.67±0.01 0.59±0.02 

M7 0.56±0.01 0.56±0.01 0.53±0.01 0.54±0.02 0.56±0.01 0.56±0.01 0.53±0.01 0.54±0.02 
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Supplementary Table 3 Statistical significance of the differences among the predictive performances for the 

three test classes. P values were computed using the Wilcoxon signed-rank test (two sided). 

Yeast PPI data 

 AUROC AUPRC 

 C1 ~ C2 C1 ~ C3 C2 ~ C3 C1 ~ C2 C1 ~ C3 C2 ~ C3 

M1 < 3.71 × 10
-8

 < 3.71 × 10
-8

 1.77 × 10
-7

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 

M2 < 3.71 × 10
-8

 < 3.71 × 10
-8

 1.06 × 10
-3

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 6.82 × 10
-7

 

M3 < 3.71 × 10
-8

 < 3.71 × 10
-8

 4.00 × 10
-8

 < 3.71 × 10
-8

 1.14 × 10
-7

 5.51 × 10
-3

 

M4 < 3.71 × 10
-8

 < 3.71 × 10
-8

 8.98 × 10
-7

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 1.26 × 10
-6

 

M5 < 3.71 × 10
-8

 < 3.71 × 10
-8

 3.42 × 10
-6

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 4.81 × 10
-7

 

M6 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 

M7 < 3.71 × 10
-8

 < 3.71 × 10
-8

 9.43 × 10
-5

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 3.65 × 10
-6

 

Human PPI data 

 AUROC AUPRC 

 C1 ~ C2 C1 ~ C3 C2 ~ C3 C1 ~ C2 C1 ~ C3 C2 ~ C3 

M1 < 3.71 × 10
-8

 < 3.71 × 10
-8

 5.53 × 10
-7

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 3.15 × 10
-7

 

M2 < 3.71 × 10
-8

 < 3.71 × 10
-8

 1.10 × 10
-6

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 4.32 × 10
-8

 

M3 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 1.98 × 10
-5

 

M4 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 4.66 × 10
-8

 

M5 < 3.71 × 10
-8

 < 3.71 × 10
-8

 4.32 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 

M6 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 < 3.71 × 10
-8

 

M7 1.42 × 10
-7

 5.12 × 10
-4

 1.52 × 10
-1

 2.05 × 10
-7

 7.98 × 10
-4

 2.27 × 10
-2
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Supplementary Table 4 Suppressing the representational bias-driven learning reduces the differences 

among the predictive performances for the three test classes. As in Supplementary Table 2, the performance 

of each prediction method is summarized as the average AUROC (area under the receiver operating 

characteristic curve) ± its standard deviation across 40 experiments and the corresponding average AUPRC 

(area under the precision-recall curve) ± its standard deviation. Please note that M6 is missing here because 

M6 does not use negative training pairs for its training (see Supplementary Methods). 

Yeast PPI data (suppressing representation bias-driven learning) 

 AUROC AUPRC 

 CV C1 C2 C3 CV C1 C2 C3 

M1 0.64±0.01 0.64±0.01 0.62±0.02 0.57±0.04 0.65±0.01 0.65±0.01 0.61±0.02 0.56±0.03 

M2 0.61±0.01 0.61±0.02 0.62±0.02 0.58±0.03 0.61±0.01 0.61±0.02 0.62±0.02 0.57±0.03 

M3 0.54±0.01 0.55±0.01 0.53±0.01 0.50±0.01 0.60±0.02 0.60±0.01 0.56±0.03 0.53±0.07 

M4 0.55±0.02 0.55±0.02 0.54±0.02 0.51±0.02 0.53±0.02 0.53±0.01 0.53±0.02 0.51±0.02 

M5 0.60±0.02 0.60±0.01 0.55±0.02 0.52±0.02 0.61±0.02 0.61±0.01 0.55±0.02 0.51±0.02 

M7 0.55±0.02 0.54±0.01 0.54±0.02 0.53±0.03 0.55±0.02 0.55±0.01 0.54±0.02 0.53±0.02 

Human PPI data (suppressing representation bias-driven learning) 

 AUROC AUPRC 

 CV C1 C2 C3 CV C1 C2 C3 

M1 0.64±0.01 0.65±0.01 0.61±0.01 0.57±0.02 0.66±0.01 0.67±0.01 0.61±0.02 0.56±0.02 

M2 0.59±0.01 0.60±0.01 0.60±0.01 0.57±0.02 0.60±0.01 0.61±0.01 0.59±0.01 0.55±0.01 

M3 0.54±0.01 0.55±0.01 0.53±0.01 0.50±0.00 0.61±0.01 0.61±0.01 0.56±0.02 0.52±0.05 

M4 0.56±0.01 0.56±0.01 0.54±0.01 0.52±0.02 0.54±0.01 0.54±0.01 0.53±0.01 0.52±0.01 

M5 0.59±0.01 0.60±0.01 0.56±0.01 0.53±0.01 0.63±0.01 0.64±0.01 0.57±0.01 0.53±0.01 

M7 0.55±0.01 0.55±0.01 0.53±0.01 0.53±0.02 0.55±0.01 0.55±0.01 0.53±0.01 0.54±0.02 
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Supplementary Methods 

Data sets 

Yeast and human PPI data (“Saccharomyces_cerevisiae-20100304.txt” and “Homo_sapiens-20100304.txt”) 

were downloaded from the protein interaction network analysis platform1. Proteins in each data set were 

clustered using CD-HIT2 such that they shared sequence identity less than 40%. Proteins with less than 50 

amino acids as well as homo-dimeric interactions were removed. Negative PPI data were generated by 

randomly sampling protein pairs that are not known to interact3. The data sets used for the study are available 

at http://www.marcottelab.org/differentialGeneralization. 

 

PPI prediction methods 

Seven PPI prediction methods used for the study are as follows. For details, please refer to the original 

publications. Here, we provide only a brief overview. 

M1: A signature products-based method proposed by Martin and co-workers4. A protein sequence is described 

by its molecular signature contents. Feature vectors of protein pairs are formed by computing a tensor product 

between their signature content vectors and then classified by a SVM5. 

M2: A protein sequence is described as in M1. However, the feature vector for a protein pair is formed by 

applying the metric learning pairwise kernel6 and then classified by a SVM. 

M3: A SVM-based method developed by Shen and co-workers7. A protein sequence is represented by a 

reduced amino acid set, and its feature vector is formed by the frequencies of occurrence of conjoint triads. For 

a protein pair, the feature vectors of the proteins are concatenated and classified by a SVM.  

M4: A SVM-based method developed by Guo and co-workers8. A protein sequence is described by its auto-

correlation values for seven different physicochemical scales. A protein pair is characterized by concatenating 

the component proteins’ auto-correlation feature vectors and then classified by a SVM. 

M5: A protein sequence is described as in M4. However, classification is performed using the random forest 

algorithm. 

M6: A method developed by Pitre and co-workers, also known as PIPE29. For a given protein pair, PIPE2 

looks for the co-occurrences of their subsequence pairs in protein pairs that are known to interact. Unlike the 

other 6 methods, this method uses only positive examples for prediction. 

M7: We have adapted a method originally developed for protein-RNA interaction prediction10. The feature 

vectors for proteins are generated as in M4. Given two feature vectors u and v, the interaction score for the two 

proteins that the two feature vectors represent is computed as uTMv, where uT is the transpose of u and M is a 

scoring matrix. M is forced to be symmetric so that uTMv = vTMu. The symmetric scoring matrix is optimized by 

maximizing the difference between the average score for positive training pairs and that for negative training 

pairs, under the constraint that the absolute value of the entries of the matrix should be between 0 and 1. 

M1, M2 and M3 were implemented using SVMlight as modified by Martin and co-workers4,11. M4 was 

implemented using libsvm12. M5 was implemented using the randomForest R package13. M6 was implemented 

by downloading the source code from the authors’ website. 
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Computational experiments for Supplementary Table 2 

Yeast proteins represented in the yeast PPI data refined as above were randomly split into two disjoint subsets 

(subsets 1 and 2). Using proteins in subset 1, we sampled positive protein pairs (i.e., those protein pairs that 

are known to interact). Negative protein pairs were randomly sampled from those protein pairs that are not 

known to interact3. These pairs form a training set as in Fig. 1. Then, three distinct classes of test pairs were 

generated as follows. Test pairs of the C1 class were generated by sampling protein pairs as for the training 

set. Test pairs of the C2 class were generated by pairing a protein in subset 1 and a protein in subset 2. Test 

pairs of the C3 class were generated by sampling protein pairs in subset 2. A given PPI prediction method was 

trained with the training set and applied to each of the three test classes, generating the three predictive 

performances reported in Supplementary Table 2 (“C1”, “C2” and “C3”). A conventional cross-validation was 

also performed on the training set by randomly dividing it into two disjoint subsets: one subset served as a 

temporary training set, while the other served as a temporary test set, as depicted in Fig. 1. The predictive 

performance obtained in this way is denoted as “CV” in Supplementary Table 2. This experiment was 

repeated 40 times to obtain statistical significance values. The same steps were followed for tests based on 

human PPI data. 

 

Supplementary Discussion 

Why do pair-input methods achieve significantly different predictive performances for distinct test 

classes? One explanation could be that pair-input methods are learning differential representation of objects 

among positive and negative training pairs: if an object is present more often in positive than in negative 

training pairs, most predictive algorithms successfully learn that test pairs involving that object are more likely 

to interact than not, which often turns out to be true3. Obviously, test pairs of the C1 class benefit fully from this 

type of representation bias-driven learning. This is also true for the C2 class, albeit to a lesser degree. In 

contrast, the C3 class can not benefit from representation bias-driven learning. When we artificially suppress 

this representation bias-driven learning by matching the number of times that a protein appears in positive 

training data with that which it appears in negative training data3,14, performance differences for the distinct test 

classes decrease (Supplementary Table 4), although they do not fully disappear. 
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