Synthesis of Carboxy ATTO 647N Using Redox Cycling for Xanthone Access

James L. Bachman, † Cyprian I. Pavlich, † Alexander J. Boley, ‡ Edward M. Marcotte, ‡ and Eric V. Anslyn§,

†Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
‡Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States

Supporting Information

ABSTRACT: A synthesis of the carbopyronine dye Carboxy ATTO 647N from simple materials is reported. This route proceeds in 11 forward steps from 3-bromoaniline with the key xanthone intermediate formed using a new oxidation methodology. The step utilizes an oxidation cycle with base, water, iodine, and more than doubles the yield of the standard permanganate oxidation methodology, accessing gram-scale quantities of this late-stage product. From this, Carboxy ATTO 647N was prepared in only four additional steps. This facile route to a complex fluorophore is expected to enable further studies in fluorescence imaging.

Far-red and near-infrared (IR) emitting fluorophores are invaluable tools in biological imaging due to the unique characteristics of excitation and emission in this region. Near-IR emitting fluorophores use exciting lasers that do not readily cause cellular autofluorescence and are generally noninvasive toward biological samples. These types of fluorophores have found no shortage of uses, including super-resolution microscopy, bioimaging and staining, and as cellular activity-based probes. Selected xanthene-based far-red emitting fluorophores are shown in Figure 1. These include the rhodamine-derived Alexa Fluor 633 (1), the carbopyronine Carboxy ATTO 647N (2), and the Si-rhodamine Janelia Fluor 646 (3). These compounds demonstrate that despite varied scaffolds, organic compounds possessing delocalized electron density can fluoresce in the far-red region.

All of the compounds in Figure 1 are based on the xanthene scaffold. First reported in 2003, the rhodamine dye Alexa Fluor 633 (1) dates back to the original N,N,N′,N′-tetramethylrhodamine scaffold reported by Ceresole in 1887. Compared with its TMR ancestor, 1 is red-shifted due to altered electronics with sulfonate groups giving it improved aqueous solubility. Changing the rhodamine core oxygen to a quaternary carbon atom, as in 2, gives rise to carbopyronines dyes. These possess a bathochromic shift relative to rhodamine and were first disclosed in the patent literature by Drexhage et al. ATTO-TEC GmbH have since optimized the photophysics of these dyes with the ATTO 647N fluorophore being based on julolidine and quinoline scaffolds and providing an ideal fluorophore for biological labeling. Substitution of the core oxygen of rhodamine with silicon was first demonstrated as recently as 2008 by Xu et al. to make Si-pyronines with red-shifted fluorescence. The bathochromic shift in wavelength is proposed to be from LUMO lowering by silicon. Numerous Si-rhodamine probes have been reported by Nagano and coworkers as well as the Lavis lab in their recent efforts that demonstrated using azetidine for improved fluorescence properties by minimizing twisted intramolecular charge transfer (TICT) states.

All of the fluorophores shown in Figure 1 possess impressive fluorescent properties for imaging, including high photostability, high fluorescent quantum yields, and minimal intersystem crossing to a dark triplet state. However, we have found that 2 possesses the unique characteristic of near-total fluorescence stability to organic acid and base. In a recently developed single-molecule peptide sequencing scheme that uses total internal reflection fluorescent microscopy (TIRF) and Edman degradation chemistry, we prepared peptides labeled with ATTO 647N and tested their stabilities to the harsh Edman chemistry, repeated treatment with trifluoroacetic acid (TFA) and pyridine/phenylisothiocyanate (PITC) for up to 20 h. In a solid-phase bead assay, we subjected fluorophores to neat TFA and separately to 9:1 pyridine:PITC both at 40 °C for 24 h. ATTO 647N showed minimal (<5%) changes in fluorescence following subjection to these harsh conditions. This unique characteristic, along with its photophysical properties, make it an ideal fluorophore for these peptide sequencing studies. Additionally, other groups have found this fluorophore to be useful in applications such as Förster resonance energy transfer (FRET) studies and single-molecule imaging.

Received: November 7, 2019
Published: December 11, 2019
A common approach to access the fluorophores shown in Figure 1 is through a xanthone intermediate. Most commonly, substitution of this ketone with an aryl-lithium species gives rise to the conjugated fluorophore, though other routes have been demonstrated. The standard methodology applied for xanthone synthesis is through direct oxidation of the xanthene with potassium permanganate at reduced temperature. This oxidation can be challenging for certain scaffolds due to the harsh nature of the oxidant, giving rise to overoxidation and decomposition of the xanthone. Further, the reaction suffers intolerance to many functional groups and is often difficult in increasing reaction scale. As an alternative oxidation, and to highlight the utility of our recently reported redox cycle for xanthone synthesis, we set out to apply this toward the synthesis of xanthone, which takes advantage of the, for most syntheses, undesired pyronine species, e.g.

This comes from spontaneous aerobic oxidation of and cannot be converted directly to by permanganate. We demonstrate gram-scale preparation of in route to Carboxy ATTO 647N (2), which was also a valuable target for our group’s use in biological imaging. With the ubiquitous use of this fluorophore by the scientific community, the lack of reported literature synthesis, and as a perfect scaffold to demonstrate our recently reported oxidation methodology, we developed a practical procedure for the preparation of Carboxy ATTO 647N (2) on a synthetically useful scale.

Carboxy ATTO 647N (2) Retrosynthetic Analysis

To achieve the synthesis of 2 from commercially available starting materials, we relied on precedent for structurally similar carbopyronine fluorophores established by Hell and coworkers. A common approach to access the fluorophores shown in Figure 1 is through a xanthone intermediate. Most commonly, substitution of this ketone with an aryl-lithium species gives rise to the conjugated fluorophore, though other routes have been demonstrated. The standard methodology applied for xanthone synthesis is through direct oxidation of the xanthene with potassium permanganate at reduced temperature. This oxidation can be challenging for certain scaffolds due to the harsh nature of the oxidant, giving rise to overoxidation and decomposition of the xanthone. Further, the reaction suffers intolerance to many functional groups and is often difficult in increasing reaction scale. As an alternative oxidation, and to highlight the utility of our recently reported redox cycle for xanthone synthesis, we set out to apply this toward the synthesis of xanthone, which takes advantage of the, for most syntheses, undesired pyronine species, e.g.

This comes from spontaneous aerobic oxidation of and cannot be converted directly to by permanganate. We demonstrate gram-scale preparation of in route to Carboxy ATTO 647N (2), which was also a valuable target for our group’s use in biological imaging. With the ubiquitous use of this fluorophore by the scientific community, the lack of reported literature synthesis, and as a perfect scaffold to demonstrate our recently reported oxidation methodology, we developed a practical procedure for the preparation of Carboxy ATTO 647N (2) on a synthetically useful scale.

Carboxy ATTO 647N (2) Retroynthetic Analysis

To achieve the synthesis of 2 from commercially available starting materials, we relied on precedent for structurally similar carbopyronine fluorophores established by Hell and coworkers.
the quinoline nitrogen was accomplished using Meerwein’s reagent, triethyloxonium tetrafluoroborate (Et₃OBF₄). This was generated by stirring epichlorohydrin and BF₃OEt₂ in diethyl ether at reflux. After decanting and briefly drying the Meerwein salt, it was heated in 1,2-dichloroethane with quinoline. Alkylation proceeded to give quinoline in 71% yield. The aryl bromide was converted to tertiary alcohol by lithiation with n-butyllithium at −78 °C followed by addition of acetone. To access the tetrahydroquinoline moiety, previous studies showed reduction of the olefin at the aryl bromide stage, as in 17, by hydrogenation required 1 MPa H₂ and heating at 130 °C. For the benzylic alcohol-substituted quinoline, it was pleasantly observed that reduction proceeded at ambient temperature with 1 atm of H₂ using 10% wt. Pd/C to yield 1,2,3,4-tetrahydroquinoline in 95% yield. Dehydration of the benzyl alcohol was achieved by treatment with potassium bisulfate (KHSO₄) in toluene at reflux, giving the second coupling partner in the synthesis of ketone.

Synthesis of Xanthone 6 by Redox Cycling

The key fragment coupling step was accomplished by combining 10 and 11 with the Lewis acid boron trichloride (BCl₃) in methylene chloride at −78 °C, promoting EAS and forging the linkage at C9 (Scheme 4). This was followed by addition of the organic solution to hot phosphoric acid, which was then heated at 115 °C for 3 h to generate carbopyronine xanthene. When attempted on the gram scale, oxidation of xanthene 4 with potassium permanganate (KMnO₄) at −15 °C in acetone, the most common methodology for the desired reaction, ketone 6 was isolated in only 18% yield for the 2-step process. It was observed that during the reaction work up after phosphoric acid treatment, 10–20% of 5 was formed due to aerobic oxidation. As Franketszo first showed and further observed by Klán and Hell, oxidation of an analogous xanthene to pyronine (e.g., 4 → 5) proceeds spontaneously under ambient conditions. With the presence of this side-reaction, byproduct 5 cannot participate in oxidation by KMnO₄ and thus lowers the overall efficiency of the desired reaction.

To incorporate this unreactive material into the reaction, we applied our recently reported xanthone methodology, which works on both the xanthene and pyronine forms of xanthene-based dyes. Following ring-closing to generate xanthene 4, the crude material was subjected to iodine in N-methyl-2-pyrrolidine (NMP) at room temperature. Within seconds, formation of 5 was apparent as the solution turned a deep blue. With the presence of this side-reaction, byproduct 5 cannot participate in oxidation by KMnO₄ and thus lowers the overall efficiency of the desired reaction.

To incorporate this unreactive material into the reaction, we applied our recently reported xanthone methodology, which works on both the xanthene and pyronine forms of xanthene-based dyes. Following ring-closing to generate xanthene 4, the crude material was subjected to iodine in N-methyl-2-pyrrolidine (NMP) at room temperature. Within seconds, formation of 5 was apparent as the solution turned a deep blue. With the presence of this side-reaction, byproduct 5 cannot participate in oxidation by KMnO₄ and thus lowers the overall efficiency of the desired reaction.

To incorporate this unreactive material into the reaction, we applied our recently reported xanthone methodology, which works on both the xanthene and pyronine forms of xanthene-based dyes. Following ring-closing to generate xanthene 4, the crude material was subjected to iodine in N-methyl-2-pyrrolidine (NMP) at room temperature. Within seconds, formation of 5 was apparent as the solution turned a deep blue. With the presence of this side-reaction, byproduct 5 cannot participate in oxidation by KMnO₄ and thus lowers the overall efficiency of the desired reaction.

To incorporate this unreactive material into the reaction, we applied our recently reported xanthone methodology, which works on both the xanthene and pyronine forms of xanthene-based dyes. Following ring-closing to generate xanthene 4, the crude material was subjected to iodine in N-methyl-2-pyrrolidine (NMP) at room temperature. Within seconds, formation of 5 was apparent as the solution turned a deep blue. With the presence of this side-reaction, byproduct 5 cannot participate in oxidation by KMnO₄ and thus lowers the overall efficiency of the desired reaction.

Scheme 3. Preparation of Quinoline Fragment 10

Scheme 4. Synthesis of Xanthone 6 by Redox Cycling

Scheme 4. Synthesis of Xanthone 6 by Redox Cycling
amino-2-methylpropanol with N,N-diisopropylethylamine (DIPEA) in methylene chloride, forming the primary amide 22, which was isolated without purification. Again, treatment of the primary amide with thionyl chloride at ambient conditions afforded oxazole 23. 45

Scheme 5. Masking Benzoic Acid 21

This protected aryl bromide 23 is converted to the aryl lithium species in THF at −78 °C with i-BuLi (1.7 M) (Scheme 6). A solution of ketone 6 with the additive N,N,N',N'-tetramethylethylenediamine (TMEDA) was slowly added to the lithiated compound in several portions and stirred overnight. After work up, the aryl oxazole was subjected to heating with 6 N HCl to hydrolyze the oxazole, giving the benzoic acid derivative 8 in a 54% yield over two steps.

Scheme 6. Substitution and Amide Coupling to Give 2

To finish out the synthesis, amide coupling of the acid with amine 7 was carried out by first generating the acid chloride with the use of POCl3; the crude acid chloride was added to a basic solution of 7, generating the methyl ester 24. Based on the conditions described by Hell,14 it was found that methyl ester saponification could be accomplished in very mild conditions with 5 equiv of KOH in a mixture of THF and water (2:1) at 0 °C. Carboxy ATTO 647N (2) was isolated by reverse-phase preparative HPLC, as the formate salt of the charged fluorophore in 91% yield for the 2-step amidation and saponification.

In summary, we developed and optimized a straightforward synthesis to the complex fluorophore Carboxy ATTO 647N (2). This procedure relies on a new redox methodology for the preparation of the key xanthone intermediate on the mmol scale. We expect that this protocol will increase access and use of the fluorophore and offers a convenient platform to rapidly construct other derivatives of this fluorophore.

REFERENCES
