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ABSTRACT
Motivation: We reformulate the problem of comparing mass-
spectra by mapping spectra to the vector space model com-
monly used in document retrieval. It follows that measures of
document similarity and document indexing may be adapted
for protein identification. In our approach a fast coarse filtering
method leveraging a metric space indexing algorithm is used
to produce an initial candidate set. We then rank the spectra in
this reduced set using ProFound’s Bayesian scoring scheme.
Ideally,the complexity of the coarse filter search approaches
O(log n), as compared to the linear performance provided by
most leading tools in the field.
Results: We consider three distance measures based on
cosine and hamming distances, modifying them to accommo-
date the peak shifts intrinsic to mass spectra and investigate
their integration with the multivantage-point index structure.
Of these, a semi-metric, fuzzy-cosine distance using peptide
mass constraints performs the best. We implement an appro-
ximate semi-metric search, and show that this improves index
pruning power over a standard metric space search.

We measure accuracy of results and index performance on
a test set of peptide fragmentation spectra from E.coli prote-
ins. We also report sensitivity(recall) and specificity(precision)
scores on a more comprehensive benchmark of 1000
Angiotensin-lltandem mass spectra, showing that, in practice,
approximate searches in this high dimensional sparse space
are acceptable when accompanied by substantial increase in
search efficiency.

1 INTRODUCTION

Proteomics experiments are often hindered by the computa-
tional expense of protein identification via database lookup of
peptide fragmentation spectra. For example, typical analyses
of an LC/LC/MS/MS experimental data set using the popular
Bioworks program (ThermoFinnegan) on a single processor
takes on the order of half a day of computation time. As this

is comparable to the time required for data collection, the
computation effectively doubles the sample analysis time.

High throughput methods for in silico identification of frag-
mentation spectra (tandem spectra or MS/MS spectra) are
becoming increasingly important, due to fast growing protein
and gene sequence databases. Most tools today employ linear
scans of large databases (using linear filters on query back-
ground information when available, to reduce search time).
The search hits are approximate and only meaningful when
ranked by a probabilistic or statistical significance/relevance
score [31, 16, 21]

There are several reasons why even approximate mass spec-
tra searches are computationally expensive. A naive similarity
measure is the Shared Peaks Count (SPC)- a count of com-
mon m/z values between two spectra. SPC does not account
for small peak shifts intrinsic to mass spectra due to mea-
surement and calibration error of the mass spectrometer.
Searches must also account for larger peak shifts caused by
post-translational peptide modifications and mutations [22].
A common solution is to add modified copies of each spec-
trum to the database [31].This is called the virtual database
approach [22]. There are 200+ known protein modifications
[13], and this method soon results in exponential blowup of
database size due to combinatorial explosion. This method
clearly does not scale and linear scans become even more
unacceptable. As an alternative, Pevzner et al. [22, 22] pro-
posed an O(n2k) dynamic programming distance measure
that can match two n-dimensional spectra that are up to &
peak modifications apart. In the context of current approaches
that use linear scans of large databases (size D), this measure
must be evaluated for every entry in the database (total time
complexity of O(n2kD)).

We propose a fast coarse filtering search algorithm for pro-
tein identification that can alleviate many of the problems
mentioned above. A coarse filter screens out unlikely can-
didates at early stages in the search, thus saving unnecessary
comparisons. Coarse filtering algorithms have been applied




successfully to genomic databases ( [30], [8]). In mass spec-
tra based protein identification, approaches that combine the
virtual database approach with complex distance functions
similar to Pevzner et al. start to become feasible in the pre-
sence of sublinear coarse filtering. Scalable coarse filtering
will result in faster searches of larger databases. It may also
improve overall quality of search by allowing the use of more
discriminative, computationally expensive measures on the
reduced candidate set.

We present a "coarse filtering-fine ranking’ scheme for pro-
tein identification. Our search methodology consists of a
coarse filtering stage that improves on the shared peaks count,
followed by a post processing fine-ranking stage. We imple-
ment a version of ProFound’s [32] Bayesian scoring scheme
as an example of a fine filter. The coarse filter overcomes
the deficiencies of the shared peaks count while speeding up
the search. The fine ranking ranks the results returned by the
coarse filter, attaching a probabilistic significance score to
each returned result. The system reports the top n matches as
computed by the fine filtering rank.

Coarse filtering algorithms for genome databases have tradi-
tionally drawn inspiration from text [12] and image retrieval
[28]. We describe a fast coarse filtering search method for
proteomics based on metric space indexing, leveraging the
vector space model from information retrieval. We represent
mass spectra as vectors of mass/charge (m/z) values, creating
a search space similar to sparse high dimensional document
vector spaces. Matching similar images is also often accom-
plished by comparing high dimensional histograms of image
color (frequency spectra). However, due to the discrete nature
of both m/z values in mass spectra and word frequency values
in document vectors, text retrieval was a better motivation for
this system.

We consider three distance measures for comparison of
mass spectra. The first is derived from the cosine similarity
measure, and adapted to account for peak shifts in experimen-
tal spectra. The second, fuzzy cosine distance with peptide
precursor mass constraints, achieves maximum reduction in
search time. We also investigate hamming distance on reduced
dimension boolean spectra vectors. We present an empirical
evaluation of the different distance functions, based on retrie-
val time and accuracy of results. We show that number of
distance calculations were reduced to 0.2% of the database
size and the candidate set for fine filtering was reduced to
0.11% of the entire database.

Metric space indexing in high dimensional spaces is difficult
because nearest neighbor and range query [6] algorithms have
an exponential dependency on the dimension of the space [7].
This is known as the curse of dimensionality [6]. In our case,
a semi-metric distance function is most effective at reducing
search time by effectively reducing the intrinsic dimensio-
nality of the space. We find that semi-metric searches on a
multiple vantage point (MVP) index tree may be approximate,
but achieve better search efficiency (pruning). As the indexing

method serves as a coarse filter, and the speedup is substan-
tial, the approximate nature of the search may be acceptable
as measured by recall-precision scores.

To summarize, we propose a fast, coarse filtering search for
peptide fragmentation spectra. Using semi-metric searches on
multiple vantage point trees, we show substantial reduction in
search complexity over linear scans, while maintaining qua-
lity of results measured using standard precision-recall scores.
Our results are ranked by an implementation of ProFound’s
scoring scheme.

Section 2 gives a brief overview of metric space indexing
and protein identification by mass spectrometry. Section 3
details our distance functions for spectra comparison. Sec-
tion 4 introduces semi-metric searches on MVP trees, and
describes evaluation measures for the same. We present
experimental results in Section 5 and conclude in Section 6.

2 RELATED WORK

A mass spectrum is a histogram of constituent mass over
charge (m/z) ratios of a set of molecules. In bottom-up pro-
teomics, the spectra are derived from peptides generated from
the enzymatic digestion of a protein. The m/z value of each
peptide is measured by a high precision mass spectrometer.
It has been shown that given a sufficient number of accura-
tely measured m/z peaks, a protein can be identified within
acceptable statistical significance scores [32]. Closely rela-
ted to the peptide mass fingerprint (PMF) spectrum, is the
peptide fragmentation fingerprint (PFF) spectrum. The indu-
ced fragmentation of a single peptide at the peptide bonds,
often via collision with inert gas, results in the fragmenta-
tion spectrum. Thus fewer, but more precise, fragmentation
spectra can uniquely identify the protein. However, especially
in MS/MS, automated searches must account for calibration
errors, post-translational peptide modifications and mutations
which introduce peak shifts into the experimental spectra.
Several approaches to in silico identification using MS have
been described in the literature. The simplest similarity mea-
sure for spectra is the Shared Peaks Count (SPC). A peak is
one measured m/z value and the intensity of occurrence. Using
SPC alone as a measure of similarity introduces various pro-
blems. As already stated, while SPC is an intuitive measure
of similarity, its accuracy diminishes quickly in the presence
of peak shifts due to mutations and/or modifications [22].
ProFound [32], MASCOT [21] and MS-FIT [9], popular
tools for protein identification using peptide mass finger-
printing, use statistical or probabilistic scoring schemes that
improve on the shared peaks count. MASCOT and MS-FIT
are based on the MOWSE score [20]. MOWSE s a scoring
scheme that uses the normalized distribution frequency of
peptides in the sequence database. MASCOT reports stati-
stical significance levels and expect values for the MOWSE
score ProFound uses a Bayesian scoring scheme. ProFound




gives the largest number of correct identifications as repor-
ted in a recent survey of the three systems [2]. Popular
tools for MS/MS identification are TurboSEQUEST [31] and
MASCOT [21].

Pevzner et al [22] proposed a similarity measure for frag-
mentation spectra, using a dynamic programming algorithm
(O(n%k)), to identify spectra that are at most k modificati-
ons/mutations apart. Applying a band optimization technique
[26] on dynamic programming, could reduce time complexity.
Band optimization has been for matching gene sequences [3]
and in speech recognition using dynamic time warping (DTW)
[25]. We believe our fuzzy cosine distance search space is
very similar to the band optimization search space. We are
investigating a proof of correctness based on this fact.

2.1 Metric Space Indexing

A non-negative distance function D,,.;(v1,v2) that satisfies
the following conditions is known as a metric.

1 Dmet(vl, ’U2) =0 ifol = Vg (identity)
2. Dpet(v1,v2) = Dpet(v2,v1) (Symmetry)

3. Dmet(’Ul,’UQ) + Dmet(U2,U3) > Dmet(’l)l,’U3) (triangle
inequality)

A metric space (X, p) is defined by a non-empty set X and a
metric distance p. A distance function that satisfies the identity
and symmetry requirements but fails the triangle inequality is
called a semi-metric. A distance function that satisfies symme-
try and the triangle inequality but fails the identity requirement
in one direction is called a pseudometric. A function with both
these properties is called a semi-pseudometric. In this paper,
we use semi-pseudometric interchangeably with semi-metric.

Obijects in (non-linear) metric spaces need not have a geo-
metrical representation, i.e, there need not be a zero point or
origin. In n-dimensional real vector spaces an object is a point
in ®™ space and has a geometric meaning. If mass spectra are
represented as lists of m/z values, they form a R™ vector space.
Vector spaces like R™ or even Boolean space (0,1)", along
with distance metrics like the L, norm (Minkowski distance

> lai — b,~|”]%) or the cosine similarity (\/%) are
a subset of metric spaces.

A range query on a metric space will return all points u
of a given distance r from a query point g, such that D(u,
g) < r. By leveraging the triangle inequality, an index built
over a metric space avoids distance computations with points
that are unlikely to be within radius r of the query. Metric
space indexing thus reduces search time by decreasing the
number of runtime distance computations. In a pivot based
index structure [6], the search space is partitioned into disjoint
regions recursively. In each recursion, one or more pivots
(vantage-point or VVP) are first selected. Then, the data points
are partitioned into two (or more) disjoint branches based on

their distances from the pivot(s). MVP-Trees [1] extend VP-
Trees by increasing the number of disjoint datasets into which
a dataset is partitioned.

3 DISTANCE MEASURES FOR COMPARISON
OF MASS SPECTRA

In this section, we introduce three distance functions for mass
spectra. We draw inspiration from the vector space model in
text retrieval and the shared peaks count in mass spectrometry.
Documents are commonly represented as sparse, high dimen-
sional vectors, where the it* entry represents a measure of
occurrence-frequency of the i** word. We need distance mea-
sures that will improve on the shared peaks count (by detecting
small and large peak shifts), and also act as good coarse filters.
We first introduce a vector space data representation for
spectra, investigating both coarse resolution and high reso-
lution vectors. We then define three distance measures that
are theoretically able to account for peak shifts due to both
calibration error and mutation/modification. We investigate
metric properties of each distance function in Section 3.4.

3.1 Data representation

A peptide fragmentation spectrum is a histogram of mass over
charge (m/z) ratios versus intensity. It is common practice to
use only m/z peak lists, ignoring intensity information [22].
Given a m/z range of [M;, M) Dalton (Da) and resolution of
representation M.,..; Da, mass spectra can then be visualized
as sparse boolean vectors, where a non zero entry signifies a
peak at that m/z value (or if the resolution of representation is
M,.s > 1.0, the presence of a peak in the range of m/z values
represented by the it* dimension). Visualizing each spectrum
as a boolean vector allows us to reformulate the problem as
a metric space indexing problem. It must be emphasized that
though this explanation deals with equi-sized boolean vectors
- the actual implementation deals with non-boolean compres-
sed vectors using m/z values directly. A fixed length boolean
vector analogy is useful here as it allows us to derive a distance
function using principles from document retrieval.

A coarse filter serves two purposes: to reduce the number of
distance computations and be discriminative enough to return
asmall relevant resultset. Any combination of data representa-
tion and distance metric must intuitively ensure that we count
peaks that differ by known amounts. Peak shifts due to calibra-
tion error are small, in the range of 0-1Da, whereas common
modifications can cause large peak shifts from 50-200 Da. We
hypothesize that this peak shift can be handled either by the
data representation or by the distance metric. Section 3.2 des-
cribes a high resolution (high dimension) data representation
with fuzzy cosine distances. Section 3.5 describes a coarse
resolution (low dimension) data representation with an exact
Hamming Distance distance metric.




3.2 Fuzzy Cosine Distance

We show that the cosine similarity measure from text retrieval
can be rewritten as a length-normalized Shared Peaks Count.
Then we define a fuzzy cosine measure, and show that by
varying a peak mass tolerance factor, r,,, s, we can account for
peak shifts.

Given a mass spectrum P (a list of m/z value peaks) and
resolution 0 < M,.s < 1.0 Da, define a high dimensional
boolean vector S such that

1 HPEPa(P Mres*l)g

S[i] = (p— Mypesx(1—1)) > M,

0 otherwise

res) and

1)
The second condition ensures that each peak in a spectrum
maps to only one non-zero entry in S. The spectrum can be
visualized as a boolean vector in (0,1)" space, N = (M2 —
M1+1)/M,.s. For example, given a m/z range of 100-5000
Da and M,.s = 0.1 Da, we are looking at sparse, 49,000
dimension vectors.
Given a peak mass tolerance, 7,5, such that 7,5 > M.,
we can define range k¥ = 7y,5/M;.,. Shared Peaks Count
within a tolerance window, using range k, can then be defined

as
SPC,( Zmatch ai,b;);j€li—k,i+kl (2
a; = bj =1
match(a;, b;) = match(am,b;) = 0,m € [1,7)
0 otherwise

@)
Again the second condition ensures that one peak can only
count for one match - multiple matches are not allowed. We
observe that for zero peak tolerance, 7,,; = 0, the shared
peaks count reduces to the dot product on boolean vectors.

SPC,(A,B) = Y match(ai,b;) = A.B (4)

We also note that cosine similarity is defined as the normalized

dot-product between two vectors.
A.B
Cos(A,B) = (5)
[FAIBI
where || A|| is the L2 norm over vector A. Modifying Equation
5 for 7,,,, > 0, we define a fuzzy cosine similarity measure

SPC.(A,B)

— TR (6)
Al Bl

Finally, since a metric space index requires a distance

metric, we define fuzzy cosine distance as the inverse cosine
of Cos,.

Cos;(A,B) =

D,,s(A, B) = arccos(Cos, (A, B)) (7
Given our boolean representation of protein mass spec-

tra, and since a metric space is a generalization of a vector
space [6], cosine distance is one obviously applicable distance

function for metric space indexing of mass spectra. Another
compelling reason is the observation that the numerator of
cosine distance for boolean vectors is the same as the shared
peaks count.

3.3 Tandem Cosine Distance

Tandem cosine distance combines fuzzy cosine distance with
the precursor mass of the query peptide. Peptides with vastly
differing precursor mass are unlikely to be similar, are should
be further apart in vector space. We factor a corresponding
precursor mass difference term into the fuzzy cosine distance.
Given two peptide sequences A, B and precursor masses M 4,
Mg; we define tandem cosine distance Dy.q as

Dtcd(AaB) = Dms(A;B) +me(AJB) (8)

D,, is a distance function that computes absolute diffe-

rence in precursor mass within a tolerance window. In order

to account for slight differences in analytical and experimen-

tally measured precursor mass, we introduce a precursor mass
tolerance factor, 7,,, and define D,,, as

_J o |Ma — Mg| < Tpm
Dypm (4, B) = { |M4 — Mp| otherwise ©)
There are two reasons why it is important to include pre-
cursor mass into the distance function. First, current MS/MS
search tools filter the database on precursor mass first using a
linear scan and then apply more expensive distance measures.
Our goal is a sublinear coarse filter that combines precur-
sor mass and peak list similarity into one distance function.
Second, tandem cosine distance reduces search time drasti-
cally when compared to simple fuzzy cosine distance - it is a
semi-metric and a better coarse filter for reasons detailed in
Section 4.

3.4 Metric properties of modified cosine distances

Fuzzy cosine distance is a semi-pseudometric distance func-
tion. As a consequence of the tolerance window, fuzzy cosine
distance may not satisfy the triangle inequality and it may not
always satisfy the identity criterion in both directions (proof
omitted). By the additive property of metric spaces, tandem
cosine distance, D;.q4 is also a semi-pseudometric. Similarly,
it can be shown that D,,,,, is also a semi-pseudometric.

3.5 Hamming Distance

Hamming Distance is defined as the cardinality of
XOR(V7, V5). Intuitively it counts the number of mismatched
peaks, and is a distance metric. We use an overlapping window
to generate coarse resolution boolean vectors. If M,..; > 1.0
is the window size, and S is the window overlap size, size of
vector V is N = (M; — M5)/S. Here V[i] = 1 iff 3 peak p, p
€ [My + (i —1)S, My +iM,.,).

Though coarser resolutions reduce the number of distance
computations (indexing of low dimensional vectors is an




easier problem), the number of results returned increases dra-
stically with increase in window size. This is because the
probability of a random match increases with coarser reso-
lutions. Since tandem cosine distance gave us better search
efficiency, this paper does not elaborate further on coarse reso-
lution hamming distance methods. However, the approach
is promising, especially when we observe that using coarser
resolutions (100-200 Da) is a simple way of matching larger
peak shifts for detecting mutations/modifications.

4 SEMI-METRIC SEARCH
4.1 Reducing the intrinsic dimensionality

The dimensionality of a space is not easily defined, especi-
ally for metric spaces. An alternative is to define the intrinsic
dimensionality [6] as p = % where p and o are the mean
and variance of the histogram of pairwise distances between
points in the space. In other words, in a plot of pairwise distan-
ces, a large mean and/or low variance implies a high intrinsic
dimensionality.
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Fig. 1. Pairwise distance distribution of database (exact and fuzzy
cosine distance)

Algorithmic performance degrades exponentially with
increase in intrinsic dimensionality. This has been referred to
as the curse of dimensionality. A good discussion can be found
in Chavez and Navarro [6]. Due to the high intrinsic dimen-
sionality of the search space, an exact metric space solution
to our problem suffers from the curse of dimensionality and
is only slightly more efficient than a linear scan. This phe-
nomenon has also been observed in document vector spaces
[27]. Pairwise distance histograms of exact cosine distance
(Figure 1) show a large mean and variance on mass spectra
space, corresponding plots (Figure 1, Figure 2)for fuzzy and
tandem cosine distances (semi-metrics) show lower means. A
semi-metric distance function actually has the effect of redu-
cing the intrinsic dimensionality of the search space. Having
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Fig. 2. Pairwise distance distribution of database (tandem cosine
distance)

justified that a semi-metric search might be more suitable in
this coarse filtering application, it follows that a semi-metric
function must be integrated with the metric space index.

4.2 Modifying the index for a semi-metric search

Given a pivot p; and a query (g, r) in a metric space search of
radius r, we would prune all points « such that

A semi metric distance function fails the triangle inequality,
by someamountk (d(X,Y)+d(Y, Z)+k > d(X, Z)). Inthis
case, Chavez and Navarro [5] show that, there may exist some
usuch that d(qg,u) + k >r, but d(g,u)<r. This means some points
u may be incorrectly pruned. However, if we can bound the
amount by which the triangle inequality will fail, the metric
space index equations can be adjusted to return exact results.
We briefly describe this procedure for the case of (multiple)
vantage point (MVP) index trees. In this case, for an exact
semi-metric search, Equation 10 is modified to

|d(u, pi) — d(g,pi)| > (r + k) (11)

For fuzzy cosine distance, we can derive (proof omitted) a

very loose upper bound on &, when every peak in one vector

differs from its corresponding match in the other vector by the
peak tolerance 7.

arccos( ) + 27pm <TOL < g + 27pm (12)

Our hypothesis is that using « in practice might be overkill,
and s likely to result in a large number of false positives due to
conservative pruning. Using TOL < k is a more aggressive
pruning technique. In practice it is difficult to determine TOL.
By using TOL = Tps + Tpm < & We theoretically revert to
an approximate search. However, our results show that by
choosing a suitable value of TOL, we can keep the precision
of results at 90%. Using TOL < k gives near 90% precision,
while achieving 99% pruning of the database. It will be useful




Table 1. Databases and test sets

Test Database  Test set Acceptable
Size Size Radius
Search Efficiency 137,349 14 (E. coli) 1.82
Search Quality 138,341 992 (Angiotensin-1l)  1.56
Scalability 653,882 14 (E. coli) 1.82

Database and test set size in terms of number of spectra.
Table 2. Databases and test sets

to derive probabilistic bounds on the correctness of the search
in the future.

4.3 Evaluation of Semi-Metric Searches

Recall(sensitivity) and Precision(specificity) are frequently
used to measure the quality of approximate searches. Ide-
ally, we want to maximize both Precision and Recall. Here
TP stands for number of true positives, FN is the number of
false negatives and FP is the number of false positives.

Ricq = Recall(Sensitivity) = TP/(TP + FN) (13)
P,.q = Precision(Specificity) = TP/(TP + FP) (14)

5 RESULTS

This section describes our experimental methodology and
results. We ran range and k-nearest neighbor queries on a mul-
tiple vantage point tree index structure modified to incorporate
semi-metric searches. Section 5.1 reports Search Efficiency
(Number of distance computations and size of candidate set
at acceptable radii). Section 5.2 measures the quality of semi-
metric search, reported using Recall-Precision pairs. Section
5.3 reports scalability results.

The database and test sets used for each test are summarized
in Table 2, along with acceptable radii for that test. It is nearly
impossible to acquire unambiguously identified spectra from
a complex sample, as the only current means for verifying a
protein’s identity from a mass spec analysis lies in software
whose accuracy is still under question. We define "correctness’
by comparing our top hit (after fine filtering) with the top hit
from the TurboSEQUEST [31]. This high confidence result
is expected to be correct because it also had high protein and
peptide probability scores after analysis with ProteinProphet
and PeptideProphet [18, 14]. There seems to be good justi-
fication for trusting the ProteinProphet and PeptideProphet
probabilities, especially for high probability identifications.

In all queries, our fine filter ranked the correct answer as the
top hit, with an identification probability of > 99% in most
cases. The scores between first and second ranked peptides
differed by at least three orders of magnitude (up to eight
orders of magnitude in many cases). We report results at the

Table 3. Parameters for theoretical digest
of E. coli proteins

Number of Proteins 4824

m/z Peak Tolerance 0.2 Da
Precursor Mass Tolerance 2.0 Da
Charge State +1

lon States b,y
Missed Cleavages 0

Enzyme Trypsin
Mass Range 0-5000 Da

radius at which all *correct’ identifications were returned by
the coarse filter.

5.1 Index performance
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Fig. 3. Tandem Cosine Distance Vs Fuzzy Cosine Distance: Percent
of database searched at acceptable radii R

This section compares fuzzy cosine distance, tandem cosine
distance and hamming distance in terms of the average num-
ber of distance computations and size of candidate set. The
test database consisted of the 4894 proteins derived from the
genome of Escherichia coli K12 (E. coli), a subset of the
SWISSPROT database from UNIPROT version 45.0. These
proteins were theoretically digested into 137,349 predicted
spectra. The test set consisted of 14 experimental tandem
mass spectra chosen from the Open Proteomics Database [23],
accession number opd00006_ECOL.I. The digest parameters
are given in Table 3.

Tandem cosine distance performs the best - both in terms
of percentage of database that is searched and the size of the
filtered resultset. Figure 3 shows the percentage of database
searched for both cosine distance based measures. Figures
4 shows a linear increase in the number of distance compu-
tations and the size of the candidate set for tandem cosine
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distance. Tandem cosine distance searches about 0.22% of
the database and returns only about 0.1% of the database.
Fuzzy cosine distance (Figure 5) performs worse, returning
less than 0.003% of the database after searching almost 75%
of the database. Similar numbers for Hamming distance are
shown in Figures 6 and 7. As mentioned in Section 3.5, the
number of results returned by a hamming distance index is
very large as compared to the reduction in distance computa-
tions. Though the percentage of the database searched reduces
with increase in window size, correct results are returned at
larger radii, and the size of the candidate set remains large.

5.2 Accuracy

This section describes quality measurements for the approxi-
mate semi-metric search. We report recall-precision scores for
the Angiotensin-11 benchmark using tandem cosine distance.
Experimental Angiotensin-1I fragmentation spectra were col-
lected on the LCQ Deca XP Plus ion trap mass spectrometer
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running Xcalibur data acquisition software. A total of 1000
MS2 scans were collected. The complete experiment details
are available online [29]. The test database was created by
adding 992 Angiotensin-Il experimental spectra into the E.
coli database described in Section 5.1..

Angiotensin-Il is a set of 992 experimentally generated
spectra from the same peptide. Each spectrum in the bench-
mark is different, but similar enough to be recognized as the
same peptide. We plotted a histogram of pairwise distances on
the query set and computed the average (R=1.42) and maxi-
mum (R=1.56) query radii from this plot. We measure the
ability of the distance measure to return all 992 (recall) and
only 992 (precision) spectra per query.

Figure 8 is a recall-precision plot for different distance mea-
sures. Choosing a "good’ value for TOL (parameter by which
index equations are adjusted) makes the recall-precision plot
near ideal. Recall, precision, number of distances and number




Table 4. Angiotensin-Il benchmark: Tandem Cosine

Distance

Radius  Recall Precision #Distances #Results
0.0 0.001 1.0 1345.0 1.004
0.5 0.001 1.0 1474.0 1.004
1.0 0.001 1.0 1475.0 1.034
1.42 0.5023 0.9962 1582.82 499.44
15 0.8537 0.9644 1587.0 878.39
1.56 0.9373 0.8751 1587.0 1067.26
1.6 1.0 0.7936 1587.0 1250.0
2.0 1.0 0.7708 1587.0 1286.98

3.0 1.0 0.7078 1691.0 140157
5.0 1.0 0.6124 1913.0 1619.85

Acceptable Radius R = 1.56
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Fig. 8. Recall-Precision curves for the Angiotensin-11 benchmark

of results for different radii are shown in Table4. At the maxi-
mum radius (R=1.56) for tandem cosine distance, precision
approaches 90% and 95%recall. This validates our assumption
that aggressive pruning, at the cost of a theoretically appro-
ximate search, might yield good benefits in terms of search
efficiency.

5.3 Scalability of the coarse filter

The database consisted of 653,882 predicted spectra from
4279 E. coli proteins and 19821 Human proteins (datasets
available online at [19]). The test set is the same as used in
Section 5.1. A series of different size databases was built from
the dataset. For each database, a set of k-NN queries was exe-
cuted with k=100. Moreover, the query results are bounded by
aradius(R) to the query object. The MVP tree implementation
is part of MoBIoS [11], a special purpose database manage-
ment system for molecular biology. Although in this study the
system is main-memory based, the MVP-tree is organized for
pagination to disk. Like the depth of a B+ tree in a relational
database system, the MoBloS MVP tree has discontinuous
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Fig. 9. Scalability: k-NN queries (k=100) showing Number of
distance computations varying with Database Size

increases in height as the database grows. Thus, the perfor-
mance degrades very slowly, subject to sudden increments
when the index increases height (for example from 300,000to
400,000). Figure 9 shows only a slight increase in the average
number of distance calculations as database size increases.
Since the single correct answer for our application is deter-
mined by the fine ranking phase, the topmost hit may not
be closest to the query, especially as database size grows.
This behavior can be countered by empirically choosing an
appropriate value for k.

6 DISCUSSION AND FUTURE WORK

We described a fast coarse filtering-fine ranking scheme for
peptide fragmentation spectra using metric space indexing.
We showed that a semi-metric fuzzy cosine distance with pre-
cursor mass constraints achieves maximal reduction in both
the number of distance comparisons (0.2% of database) and
the size of the candidate set (0.11% of database). At accepta-
ble radii, we reported 90% average precision on a 1000 protein
Angiotensin-11 benchmark. We also showed scalability of the
coarse filter on k-NN queries on the modified MVP index.
A basic version of the system for protein identification via
peptide mass fingerprinting is accessible online [17].

We offered some solutions to the automatic detection of
mutations and modifications. The exponential blowup, cau-
sed by adding extra theoretically modified spectra into the
database, will have less drastic effects in search time due
to a sublinear coarse filter. Alternatives to the virtual data-
base approach are also made more feasible. One possible
solution to matching mutations/modifications is to derive a
distance metric from Pevzner’s dynamic programming simi-
larity measure algorithm and use it as the distance measure for
a coarse filter- the O(n2k) complexity will be countered by
sublinear search complexity. As mentioned in Section 2, there
exists room for decreasing the time complexity of Pevzner




et al.’s dynamic programming approach using band optimi-
zation techniques [25]. Another alternative, is to use coarse
resolution hamming distance with precursor mass constraints
to detect mutations/modifications. This would be similar to
increasing the tolerance window of fuzzy cosine distance. We
believe that either of these coarse filters will return a candidate
set that is a super set of Pevzner et al.’s resultset and we are
working on deriving a theoretical proof of this behavior.

We plan to test our system against identified semi-complex
spectra, few of which are publicly available [15, 24, 10]. We
would also like to investigate the direct integration of a proba-
bilistic ranking scheme with the results returned by the index

[4].
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