Diametrical Clustering for identifying anti-correlated gene clusters
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Abstract: Motivation: Clustering genes based upon their ex-
pression patterns allows us to define cellular pathways and predict
gene function. Most existing clustering algorithms cluster genes
together when their expression patterns show high positive corre-
lation. However, it has been observed that genes whose expression
patterns are strongly anti-correlated can also be functionally similar.
Biologically, this is not unintuitive — genes responding to the same
stimuli, regardless of the nature of the response, are more likely to
operate in the same pathways.

Results: We present a new diametrical clustering algorithm that
explicitly identifies anti-correlated clusters of genes. Our algorithm
proceeds by iteratively (i) re-partitioning the genes and (ii) com-
puting the dominant singular vector of each gene cluster; each
singular vector serving as the prototype of a “diametric” cluster. We
empirically show the effectiveness of the algorithm in identifying
diametrical or anti-correlated clusters. Testing the algorithm on yeast
cell cycle data, fibroblast gene expression data, and DNA microarray
data from yeast mutants reveals that opposed cellular pathways
can be discovered with this method. We present systems whose
mRNA expression patterns, and likely their functions, oppose the
yeast ribosome and proteosome, along with evidence for the inverse
transcriptional regulation of a number of cellular systems.
Availability: See http://www.cs.utexas.edu/users/usman/diametrical
for the experimental results. Software is available on request.
Contact: inderjit@cs.utexas.edu

Keywords: DNA microarrays, gene expression, clustering, anti-
correlated clusters.

1 Introduction & Motivation

DNA microarrays simultaneously measure the mRNA expres-
sion of thousands of genes in a single experiment (Lashkari
et al., 1997); current generation microarrays typically measure
expression of every gene encoded by a genome. From sets
of DNA microarray experiments, an expression vector for
each gene can be constructed, where the vector describes
the expression of a given gene under a range of cellular
conditions, cell types, genetic backgrounds, etc. Analysis of
such data can greatly help in understanding and predicting
functions of genes, many of which have been sequenced but
are as yet of unknown function.

A key step in the analysis of gene expression data is the
clustering of genes into groups that show similar expression
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values over a wide range of experiments. Given enough inde-
pendent experiments, genes clustered in this fashion tend to be
functionally related (Eisen et al., 1998; Marcotte et al., 1999).

There is already a wealth of work in cluster analysis of
genes, ranging from hierarchical clustering (Eisen et al.,
1998), k-means (Tavazoie et al., 1999; Herwig et al., 1999),
self-organizing maps (Tamayo et al., 1999), algorithms based
on principal components analysis (Hastie et al., 2000) and
graph-based algorithms (Sharan and Shamir, 2000). Most of
these algorithms use some measure of correlation between ex-
pression vectors, such as correlation coefficient, and tend to
put those genes in one cluster that show strong positive corre-
lation between their expression vectors. However, as observed
by (Shatkay et al., 2000):

“Genes that are functionally related may demon-
strate strong anti-correlation in their expression lev-
els, (a gene may be strongly suppressed to allow
another to be expressed), thus clustered into sepa-
rate groups, blurring the (functional) relationship be-
tween them.”

In general, we often expect the genes in a given cellular
pathway to be co-expressed (positively correlated) to some
extent. Genes whose expression is anti-correlated with these
might include members of a pathway whose action is opposed
to that of the first pathway (Qian et al., 2001). As an example,
the yeast amino acid bio-synthesis genes (CPA2, HIS4, HISS,
LYS1, ARG4, HOM3, etc.) are strongly co-expressed (cor-
relation coefficients > 0.7 over 300 microarray experiments
(Hughes et al., 2000) with the SER3 gene, which catalyzes
the first committed step in serine synthesis. The CHA1 gene,
encoding the serine/threonine deaminase which breaks down
serine in the opposed catabolic pathway, shows strongly anti-
correlated expression (correlation coefficient = -0.7) with the
SER3 gene. So, genes involved in the synthesis of serine show
anti-correlated expression with genes involved in the break-
down of serine. A second category of genes we might expect
to show anti-correlated expression patterns are genes which act
to repress the expression of other genes. Again, we expect that
these genes will be generally involved in the same biological
pathway, but will show anti-correlated expression patterns.

In this paper, we pose the goal of detecting anti-correlated
gene clusters. This provides us a way to explicitly look for op-
posed systems of genes, and also to investigate function simi-
larity between such opposed clusters.

In order to achieve this goal, we propose a new clustering
algorithm which puts strongly correlated and anti-correlated



genes into the same “diametric” cluster. A simple post-
processing step can then separate the positively correlated
genes from the ones that are negatively correlated. Our clus-
tering algorithm bears some resemblance to the k-means pro-
cedure (Duda et al., 2000), in that it iteratively alternates be-
tween (i) reallocation of cluster members and (ii) computation
of “prototypes” of the new clusters. In k-means, each clus-
ter’s “prototype” is the centroid (or mean) of its constituent
members. However, this simple strategy would breakdown for
our goal since each cluster contains positively and negatively-
correlated genes. In our diametrical clustering algorithm, each
cluster’s prototype turns out to be the dominant singular vec-
tor of the matrix whose rows comprise the cluster members.
This strategy proves to be successful in identifying diametric
clusters. More details are given in the Algorithm section.

We now give a brief outline of the paper. First we discuss
some similarity measures used in clustering after which we
introduce our algorithm to detect anti-correlated clusters. In
the experimental part of the paper, we apply the method to
three sets of mRNA expression data and present results from
the analyses. Finally, we present conclusions and future work.

A word about notation: small letters such as g, &, x and v
will denote vectors, capital letters such as A, G denote ma-
trices. Also, ||g|| denotes the L? norm of vector g while g’ h
denotes the usual inner product between vectors.

2 Similarity Measures

Gene expression data from a set of microarray experiments is
typically presented as an m X n matrix G in which the rows cor-
respond to genes, the columns to experiments, and the (i, j) en-
try in the matrix corresponds to the expression level of gene i in
the j-th experiment. Note that m is the total number of genes,
while n is the number of experiments.

Most clustering algorithms require a similarity (or distance)
measure. A popular gene similarity measure is the correlation
coefficient (Eisen et al., 1998). For n-dimensional gene vectors
g and h, the correlation coefficient is defined as:
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where g; is the expression level of gene g in the i-th experi-
ment, u, is a number usually taken to be the mean of all ex-
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and yj, are taken as the means of values in g and & respectively,
then S(g,h) is exactly equal to the Pearson correlation coeffi-
cient, which is a measure that captures the linear relationship
between the observations g; and h;, i = 1,...,n. When yq is
set to 0, then S(g, ) equals the cosine of the angle between the
vectors g and h.

By shifting each gene vector by its mean and then normal-
izing it to have unit norm, the Pearson correlation coefficient

S(g,h) =
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is seen to simply equal the inner product between the (trans-
formed) gene vectors. More precisely, by making the transfor-
mations
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to every gene vector, the correlation coefficient in (1) may be
written as the inner product between two unit vectors, i.e.,

g =

S(g,h) = &"h.

In this paper, we perform such data transformations before
clustering. The inner product has been used previously as a
measure of similarity, for example see (Sharan and Shamir,
2000) and (Brown et al.,, 2000). Note that each trans-
formed gene vector g resides on the unit (hyper)sphere in n-
dimensional space.

3 Algorithm

Our goal is to find clusters containing genes that are either
highly positively correlated or highly negatively correlated.
Hence, an obvious similarity measure to use is the square of
the correlation coefficient, i.e.,

S(g,h) = (87h)?,

where g and & are gene vectors with mean O and norm 1.
Clearly this measure is high (close to 1) if the genes have high
positive or negative correlation.

Having defined a similarity measure, we need an appropri-
ate clustering algorithm. Two choices are to either use a hier-
archical clustering algorithm or a graph partitioning approach.
However, we reject these choices since the complexity of these
algorithms is at least quadratic in the number of genes. We
want to be able to process all yeast genes (=~ 6,000) and all
human genes (= 35,000) and so it would be desirable for our
clustering algorithm to scale linearly with the number of genes.

The popular k-means algorithm is efficient; however it is not
suitable for our measure of similarity. Given a cluster which
contains genes that have high positive as well as negative cor-
relation, it would be incorrect to compute the cluster centroid
(or mean) as the “cluster prototype” as is done in the tradi-
tional k-means algorithm. Thus we need a different definition
of “cluster prototype” that is suitable for the squared correla-
tion coefficient.

Given a cluster C; of genes, the natural question to ask is:
what cluster prototype (or representative) vector x ; is closest,
on average, to all the gene vectors in the cluster using the sim-
ilarity measure in (2). The mathematical formulation is to find
a unit vector x; such that the sum
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Algorithm Diametrical Clustering(G.k)

Input: G is the m X n gene-expression matrix where m is the
no. of genes and r is the no. of experiments,
k is the number of desired diametric clusters.

Phase I:
1. Initialize the k clusters, and compute the dominant
right singular vectors vy,...,v; of each cluster sub-
matrix G1,... ,Gy respectively.

2. Re-compute all clusters: for each gene g find its new clus-
ter index as

J*(g) = argmax;(g”v)?,

resolving ties arbitrarily. Thus compute the new gene
clusters C;, 1 < j <k, as

Ci={g:j"(g) =j}

3. Re-compute vy,...,v; to be the dominant right singular
vectors of the new cluster sub-matrices Gy,...,Gy re-
spectively.

4. If “converged” go to Phase II, else go to step 2 above.
Phase II:

1. For each diametric cluster C; output the 2 clusters:

Co =
Ci1 =

{g€Ci&g"vi >0},
{g€Ci&g"vi <0},

and their normalized centroid (mean) vectors as the clus-
ter “fingerprints”.

Figure 1: Algorithm for diametrical clustering

is maximized. Using linear algebra, it is well-known that the
optimal solution is achieved when x ; equals the dominant right
singular vector of the matrix G ; whose rows comprise all the
gene vectors in the cluster (Golub and Loan, 1996). For the
sake of completeness, we give a proof in the Appendix. Thus,
given a clustering C1,C,. .. ,C; we can measure its quality by

k
0(C1,Ca,...,Cr) = Y, Y (8"v))% 3)
j=1
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where v; is the dominant singular vector of cluster C;. Our
goal of finding k diametric clusters can be posed as the search
for clusters that maximize this quality.

Figure 1 gives an algorithm that searches for such a clus-
tering. Phase I of the algorithm alternates between two steps:
(a) obtain a new clustering based on the closeness of genes to
the current set of singular vectors, (b) re-compute the set of

singular vectors for this new clustering. The dominant singu-
lar vector of each of the clusters can be efficiently computed
by using power iteration or the faster converging Lanczos al-
gorithm (Golub and Loan, 1996). Our diametrical algorithm
has the pleasing property that each iteration always increases
the quality measure given in (3) (a proof is given in the ap-
pendix). Thus the quality measure will converge to a limiting
value and the iteration is guaranteed to terminate with an ap-
propriate convergence criterion. For more details, see (Dhillon
and Modha, 2001) and (Selim and Ismail, 1984).

Phase II of the algorithm separates each diametric cluster
into a pair of anti-correlated clusters. As shown in Figure 1
this is done by simply separating the genes in each diametric
cluster C; according to whether they have positive or negative
inner product with the cluster’s singular vector, i.e., gTvi is
positive or negative. Note that our algorithm does not force
a diametric or anti-correlated structure on the data. Indeed, if
the data set does not have anti-correlated clusters then one of
the clusters found in Phase II will be empty.

The time taken by the algorithm is O(mnkt) where 7 is the
number of iterations required — experimental results show
that 15-20 iterations are typical. Detailed analysis and timing
results are given in Section 4.

An interesting point to note is that our diametric cluster-
ing algorithm proceeds by clustering together gene vectors ac-
cording to their closeness to the lines described by the sin-
gular vectors. These lines are 1-dimensional objects — on
the other hand, traditional clustering algorithms like k-means
cluster vectors based on their proximity to points, which are
0-dimensional objects.

4 Experimental Results

4.1 Datasets

Human Fibroblasts: First, we analyzed the human fibroblast
data set of (Iyer et al., 1999), which reports the response
of human fibroblasts following the addition of serum to
the growth media. This data set (available from genome-
www.stanford.edu/serum) contains the expression levels of
8,613 human genes which were obtained by depriving human
fibroblasts of serum for 48 hours and then stimulating them by
the addition of serum. Expression levels were measured at 12
time points after the stimulation, and an additional data-point
was obtained from a separate unsynchronized sample. We
analyzed the subset of 517 genes reported in (Iyer et al., 1999)
whose expression levels changed substantially across the
samples. The data was preprocessed by dividing each entry by
the expression level at time zero, taking the log of the result,
and then normalizing each 12-element expression vector to
have unit L% norm.

Yeast Cell Cycle: Next, we analyzed the set of gene
expression data measured from synchronized yeast cultures
through several phases of the cell cycle (http://cellcycle-



www.stanford.edu; (Spellman et al., 1998)). This data set con-
tains data from yeast cultures synchronized by four indepen-
dent methods: o factor based (samples taken every 7 minutes
over 119 minutes), arrest of a cdc15 temperature sensitive mu-
tant (samples taken every 10 minutes over 290 minutes), arrest
of a cdc28 temperature sensitive mutant taken from (Cho et al.,
1998, Section 3.1), and elutriation data (30 minute samples
taken over 6.5 hours). In addition it contains experiments in
which G1 cyclin CIn3p and B-type cyclin CIb2 were induced.
Spellman et al. (1998) identified 800 genes that are cell cycle
regulated, out of which we used a subset of 696 genes which
have at most four missing values. The data was normalized to
have mean 0 and norm 1.

Rosetta yeast: Lastly, we analyzed the Rosetta Inpharmat-
ics yeast data set of (Hughes et al., 2000). This data consists of
300 experiments measuring expression of 6,048 yeast genes,
in which transcript levels of a mutant or compound-treated
culture were compared to those of a wild-type or mock-treated
culture. 276 deletion mutants, 11 tetracycline-regulatable al-
leles of essential genes, and 13 well-characterized compounds
were profiled. We examined the subset of 5,246 genes which
had no missing expression measurements, and normalized
each 300-element expression vector to have unit L2 norm.

4.2 Validation of diametrical clusters

We first present the diametrical clusters obtained for the
yeast cell cycle dataset (Spellman et al., 1998), where we see
how our algorithm separates genes with opposing expression
profiles, and which also tend to peak in diametrically opposite
phases of the cell cycle. Secondly we provide evidence on
the Rosetta (Hughes et al., 2000) dataset that anti-correlated
genes are functionally related.

4.2.1 Yeast Cell Cycle

We applied our clustering algorithm on this dataset to produce
12 clusters. Our clustering algorithm clusters the genes based
on all the experiments performed in this dataset. However, for
ease of analysis and better visual representation we present
the results on just the elutriation (30 minute samples taken
over 6.5 hours) experiments.

We observe that the diametric clusters represent genes with
opposed expression patterns. As genes in this data set all show
cyclic expression changes as the cell cycle progresses, the di-
ametric clusters also tend to contain genes whose expressionn
levels peak in opposed times in the cell cycle, as plotted in Fig-
ure 2. The rest of the clusters (not plotted) from this dataset
show similar behaviour.

4.2.2 Relationship between correlation coefficients and
functional annotation

To evaluate if anti-correlated genes shared some degree of
functional relatedness, we took all yeast genes with functional
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Figure 2: Expression profiles of the mean of the clusters ob-
tained on the yeast cell cycle dataset (only elutriation experi-
ments shown). (a), (b), and (c) each display the mean vectors
of the two opposed clusters obtained from Phase II of the algo-
rithm. The phases of the cell cycle are plotted in (d), indicated
with the expression profiles of 5 genes with phase-specific ex-
pression.

annotation in the KEGG database (Kanehisa and Goto, 2000),
then measured the correlation coefficients between the expres-
sion vectors of all pairs of the annotated yeast genes. For each
gene pair, we then represented each gene’s function with a set
containing KEGG keywords, which allowed us to compute
the Jaccard coefficients between the gene’s KEGG categories
(Marcotte and Marcotte, 2002). The Jaccard coefficients of
two sets A and B is defined as %.

In Figure 3, we have plotted the functional similarity (mean
Jaccard coefficient of the KEGG categories) versus the cor-
relation coefficient of the expression vectors. As expected,
genes with co-expression (high positive correlation coeffi-
cients) show strong functional similarity. However, genes with
anti-correlated expression (high negative correlation coeffi-
cients) also show functional similarity, validating the search
for anti-correlated gene expression clusters.

4.3 Analysis of diametrical clusters
4.3.1 Human Fibroblasts

We applied our algorithm to obtain 5 diametric clusters in
Phase I which were separated into 10 clusters in Phase II. We
chose 10 clusters so that we could compare our results to pre-
viously published results on this dataset. An examination of
the expression profiles of the centroid of each cluster, plotted
in Figure 4, shows that the diametrical clustering algorithm
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Figure 3: Genes with both highly correlated and highly anti-
correlated mRNA expression patterns tend to operate in simi-
lar cellular pathways.

nicely identifies genes with opposed expression patterns.
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Figure 4: Expression profiles of the mean of the clusters ob-
tained on the human fibroblast dataset. Each figure contains
the means of the two clusters obtained from Phase II of the al-
gorithm, and identifies opposing systems. Systems which turn
off in reponse to serum stimulation can be seen to be system-
atically understudied.

Known relationships: In general, we find the systems in-
duced by serum addition are partly characterized, but the sys-

tems turned off in a synchronized manner are considerably
under-studied. The asymmetry in knowledge of the cellular
systems is especially obvious for the diametric clusters 6 and
7 (Figure 4d). Cluster 7 includes a number of genes involved in
inter-cellular signaling, as well as inflammation, angiogenesis
and re-epithelialization, including IL1beta, thrombomodulin,
IL8, heparin binding growth factor, ICAM1, monocyte chemo-
tactic protein 1, and heparin growth factor 2. These genes are
induced shortly after the addition of serum, only to be turned
off again after a few hours.

The diametric cluster 6 contains 80 genes, which are ex-
pressed in the GO resting state, down-regulated following a
short interval after serum addition, only to be expressed again
shortly after. These genes include stress response genes, such
as heat shock factor 2, and genes inhibitory of cell growth,
such as the cdk6 inhibitor. However, the genes in this clus-
ter are remarkably poorly studied, and of the 80 genes in this
cluster, 73 are of entirely unknown function.

Cluster 3 (Figure 4b) includes a number of genes involved
in cytoskeletal reorganization, such as the G-protein coupled
receptor EDG-1 and desmoplakin, as well as genes such as
metallothionein, the GTP-binding protein RAN and the RAN-
specific GTPase activating protein. These genes show quite
low expression initially, gradually rising in expression levels
through the course of the experiment. The diametric cluster 2
shows exactly the opposite pattern: genes expressed high at the
beginning of the experiment whose expression levels fall grad-
ually over time. The 57 genes in this cluster include fibrillin,
farnesyl diphosphate farnesyltransferase, carnitine palmitoyl-
transferase, and 46 genes of unknown function.

New relationships: Analyzing this data for diametrical
clusters reveals two clusters whose means are different from
those in (Iyer et al., 1999). First, cluster 9 (Figure 4e) con-
tains a number of genes related to DNA replication and cell
cycle progression, including the G2/M-specific cyclin A and
the cyclin dependent kinases regulatory subunit, as well as
genes such as importin 1, proliferating cell nuclear antigen,
centromeric protein E, and ribonucleotide reductase. These
genes all show minimal expression in the GO resting state, but
are induced following a considerable time lag after serum ad-
dition. The diametric cluster 8 shows a set of genes with the
opposite expression pattern, initially expressed in GO, but then
turning off with a timing well synchronized to the genes of
cluster 9. In this cluster are 9 genes, only 4 of known func-
tion: apolipoprotein D, complement C1S, lipoprotein lipase,
and connective tissue growth factor. Thus, it would appear
that in a fashion coordinated with the reentry into the cell cy-
cle, genes are downregulated for serum lipid transport, fibro-
genesis, and complement activation.

A second novel diametric cluster is shown in Figure 4a:
Cluster 1 represents those genes showing a transient induc-
tion immediately following the addition of serum, such as
endothelin 1, interleukin 6, tropomyosin alpha, and the early
growth response protein 1. Genes in the diametric cluster
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Figure 5: Expression profiles of specific genes from some of
the diametric clusters on the Rosetta yeast dataset. The clusters
show genes known (a-c) or proposed (d) to work in function-
ally related, but opposing, cellular systems, whose expression
profiles show inverse relationships.

0 show a transient decrease in expression, recovering about
16-20 hours following serum addition. However, unlike the
transiently activated genes, of which just less than half are
characterized, 26 of the 29 genes in this diametric cluster are
of unknown function.

4.3.2 Rosetta yeast

Known relationships: We applied our clustering al-
gorithm to this dataset to produce 40 diametric clusters,
thus giving a total of 80 clusters. Our analysis reveals
a number of opposed cellular systems, listed in full at
http://www.cs.utexas.edu/users/usman/diametrical. Four pairs
of diametric clusters are shown in Figure 5. For example, the
amino acid synthesis genes mentioned in the introduction clus-
ter together, with the opposed serine catabolism gene CHA1
occurring in the diametric cluster (see Figure 5a).

New relationships: In cluster 46 (Figure 5b) we observe
that a large number of iron and copper uptake and acquisition
genes are co-expressed, including FIT1, FIT2, FIT3, the ferric
reductase FRE2, FRE®, the iron permease FTR1, the ferroxi-
dase FET?3, the copper transporter CTR2, and the enterobactin
transporter ENB1. The diametric cluster contains the CCC1
gene, which is known to transport excess iron from the cytosol
to store it in the vacuole(Li et al., 2001). Thus, the systems of
iron acquisition and handling of excess iron are in opposition
and show diametric expression.

A third example of opposed systems is shown in Figure 5c:
a number of proteasomal and vesicular transport genes are co-

expressed, including proteasomal proteins alpha 5 and 7, beta
1,3,4,6, and 7, SNX4, RPN 1, 2, 7, 11, and 12, RPT 2, 4, and
6, and the proteasome maturation factor UMP1. The diamet-
ric cluster contains genes involved in carbohydrate and amino
acid synthesis, including acetate coA ligase, ILV5, MET6, di-
hydrofolate reductase DFR1. We speculate that the amino
acids produced by proteosomal degradation relieve the cell
from having to synthesize the amino acids. Therefore, the
protein degradation and amino acid synthesis genes can be in-
versely regulated, as we observe.

As a fourth example (Figure 5d), cluster 8 contains more
than 50 ribosomal genes. The diametric cluster contains
a set of genes of unknown function, including YJL149W,
YNL116W, YNROO5C, YMRI184W, ECM37, MLF3,
YBRO16W, YJR120W, YDL172C, YDL0O53C, YMR140W,
YNL140C, YMR141C, YBR273C, as well as BMH2, a ho-
molog of the mammalian 14-3-3 protein which interacts with
the proteasome, NGR1, a gene possibly involved in growth
regulation, and AAP, a gene which represses translation of the
arginine bio-synthetic gene CPA1 in the presence of excess
arginine. It is possible that these uncharacterized genes,
whose expression patterns oppose that of the ribosome, may
represent systems which regulate translation (such as AAP) or
protein degradation (such as BMH2).

4.4 Comparison to other methods

In this section we compare the diametrical clustering to other
clustering methods. We evaluate the quality of the clustering
using Hyuye and S4,, measures (Sharan and Shamir, 2000). Let
¢; be the normalized centroid (mean) vector of cluster C;. Then

Hpye = — 2 2 8 Ci,
miz lgEC
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Intuitively, Ha,. measures the average cohesiveness of clusters
while S4,. measures the average separation between clusters.
In general, we desire higher values of H4,. and lower values
of Save. We first present results comparing the Haye and Sy,
to other methods followed by a comparison of running times.

4.4.1 Implementation and Platform

We implemented the diametrical clustering algorithm in C++
using the LEDA library, and used the Expander v1.0 software
(obtained from Roded Sharan) to conduct the experiments on
CLICK (Sharan and Shamir, 2000). We used a 600 MHz Pen-
tium machine running Debian Linux to run our experiments.

4.4.2 Comparison of H4,, and Sy,

All datasets were preprocessed in the same manner as in the
studies we compared against. We first applied the diametrical



clustering algorithm on the yeast cell cycle data (Spellman
et al., 1998) to obtain 6 clusters and compared our results to
ones published in (Sharan et al., 2002). We then applied our
algorithm on the human fibroblast dataset (Iyer et al., 1999)
and compared our results to those published in (Sharan and
Shamir, 2000). Finally we ran CLICK on the Rosetta yeast
dataset using the Expander v1.0 software and compared the
results to our algorithm.

Program #Clusters | Have | Save
Yeast cell cycle
Diametrical 6 0.6 | -0.13
CLICK 6 0.66 | -0.1
K-Means 49 0.63 | 0.09
GeneCluster (SOM) 6 0.62 | -0.07
CAST 5 0.6 | -0.15
Human fibroblast
Diametrical 10 0.88 | -0.09
CLICK 10 0.88 | -0.34
Hierarchical 10 0.87 | -0.13
Rosetta yeast

Diametrical 60 0.57 | -0.02
CLICK (Expander) 59 0.55 | -0.03

Table 1: Comparison of Hyy and Sa,. of various methods on
all the datasets

The results in Table 1 show that the Hy,. and Sa,. values
produced by our algorithm are quite good and compare favor-
ably with other methods. Note that our algorithm does not
explicitly try to optimize these values; instead its focus is on
finding opposed gene clusters.

4.4.3 Comparison of running time

We provide a running time comparison of our method to
CLICK. Since our algorithm only produces an even number
of clusters, we try to produce the closest number of clusters
produced by CLICK. Even though we have a naive imple-
mentation of our algorithm in C++ the running time is still
acceptable for large datasets. In future work, we will optimize
the speed of our implementation.

Dataset CLICK Diametrical
Human fibroblast | 88.28 (5) 1.58 (6)
Yeast cell cycle 60.75 (12) 6.55 (12)

Rosetta 401.67 (59) | 663.02 (60)

Table 2: Comparison of running times (in seconds) of our al-
gorithm against CLICK on all the datasets. Next to the time,
we also show the number of clusters created by each method.

5 Conclusions and Future Work

In conclusion, we have explicitly searched for genes with
opposite patterns of gene expression. To do this efficiently,
we have introduced a diametrical clustering algorithm, which
identifies pairs of gene clusters, each cluster with an expres-
sion profile opposite that of the other. We show that genes
with anti-correlated expression patterns are often functionally
related, and often encode systems with related, but opposite,
functions in the cell. Using this algorithm we discover sys-
tems opposing the yeast ribosome and proteasome, we demon-
strate the opposition of expression of amino acid “synthesis
and degradation” system and of iron acquisition and storage
systems, and we show that genes turning off following serum
stimulation of fibroblasts are systematically under-studied.

A number of improvements to our analysis are apparent.
Foremost, there are problems with k-means like strategies —
for example, empty clusters, initialization strategies, the need
to specify the number of clusters, etc., which could be im-
proved. Second, in the algorithm we describe, we have de-
tected diametrical clusters by looking at closeness to one-
dimensional objects, i.e. lines. In general, we can look for
closeness to higher dimensional objects, which might suggest
linear dependencies between clusters and may give even more
insight into the organization and regulation of genes. Finally,
it would be very interesting to look for conserved regulatory
motifs upstream of the genes in diametrical clusters. It is not
immediately apparent if the genes would be expected to share
common motifs, but as they seem to be responding to common
stimuli, albeit in opposite directions, it is not unreasonable to
expect to find common control elements, possibly even those
responsible for the general response, while elements responsi-
ble for the specific direction of response might be found in the
separated clusters.
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7 Appendix
Lemma 1 (Golub and Loan, 1996) Suppose g1,82, ... ,8&m are

n-dimensional real vectors that form the rows of the m X n ma-
trix G. Then the unit vector x that maximizes

fx) =x" (2&8?) x=x'GTGx

is the dominant right singular vector v of G (or equivalently,
the dominant eigenvector of G G). The optimal value equals



fv)=vl (Zig,-giT) vi = 63, where G is the largest singular
value of G and 61 > ©3.

Proof. Let x be an arbitrary unit vector and express it as x =
> o,;v;, where Y; Oci2 =1 and v;’s are the (orthonormal) right

singular vectors of G. Since GTGv; = Gl»zv,',

flx) = X'GTGx = Zoclgciz.
i

The above quantity is maximized when oy = 1 and all other

a;’s are 0, Hence, the optimal x equals v| and the maximum

value attained equals viGTGv, = G%.

Theorem 1 Phase 1 of Algorithm Diametrical Clustering
given in Figure I never decreases the quality measure

k
Q(Cr,--,G) = X Y (87v)’

from one iteration to the next.

Proof. Let C l(t), RV ,EI) be the clusters at iteration #, and let
) ()

Vi',...,v; be the corresponding singular vectors. Then

2 (gTVSI))Z

IN
™M~

2 (gTv(f‘H))Z
J
]:1g€C§t+l)

IN
™M~

= o™ ... )

where the first inequality is due to step 2 of the algorithm (see
Figure 1), and the second inequality follows from Lemma 1.
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