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Networks are proving to be central to the study of gene function, protein—
protein interaction, and biochemical pathway data. Visualization of net-
works is important for their study, but visualization tools are often
inadequate for working with very large biological networks. Here, we
present an algorithm, called large graph layout (LGL), which can be used
to dynamically visualize large networks on the order of hundreds of
thousands of vertices and millions of edges. LGL applies a force-directed
iterative layout guided by a minimal spanning tree of the network in
order to generate coordinates for the vertices in two or three dimensions,
which are subsequently visualized and interactively navigated with
companion programs. We demonstrate the use of LGL in visualizing an
extensive protein map summarizing the results of ~21 billion sequence
comparisons between 145,579 proteins from 50 genomes. Proteins are
positioned in the map according to sequence homology and gene fusions,
with the map ultimately serving as a theoretical framework that integrates
inferences about gene function derived from sequence homology, remote
homology, gene fusions, and higher-order fusions. We confirm that
protein neighbors in the resulting map are functionally related, and that
distinct map regions correspond to distinct cellular systems, enabling a
computational strategy for discovering proteins’ functions on the basis of
the proteins” map positions. Using the map produced by LGL, we infer
general functions for 23 uncharacterized protein families. LGL is freely
available (at http:/ /bioinformatics.icmb.utexas.edu/Igl).

© 2004 Elsevier Ltd. All rights reserved.

Keywords: network; visualization; protein function; protein map;
bioinformatics

Introduction

About half of the roughly 40,000 genes encoded
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genomes, are completely uncharacterized and of
unknown function. There is a broad need for
methods to discover the functions of these
thousands of uncharacterized genes and how they
interact with each other. An important method of
function discovery is the study of genes and their
products as components of networks, rather than
studying genes in isolation or in linear pathways.
Networks are already being used to model gene
function, protein—protein interaction,** and bio-
chemical pathway®~” data, often on a genome-
wide scale. This has brought forth the need for
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tools for visualizing and exploring biological net-
works. Network-drawing programs are quite
prevalent, such as AT&T GraphViz among others,®
and more recently, network visualization tools
have been developed specifically for the biological
community.”~" Such algorithms are typically
intended for small networks. However, algorithms
are required to dynamically, clearly, and inter-
actively visualize large networks on the order of
millions of edges and hundreds of thousands of
vertices such as are generated by large-scale
protein and DNA sequence comparisons. Here,
we first introduce a method for dynamically
visualizing and exploring such large networks in
two (2D) or three dimensions (3D), implemented
as a open source suite of programs named large
graph layout (LGL), then apply LGL to visualize a
complete global protein homology network.

When confronted with the thousands of genes
from genome sequencing projects, one might first
compare the gene sequences with each other to
identify gene families. The results of such a direct
sequence comparison are informative,'*"* but
additional information emerges by examining
results from many such sequence comparisons.'*~"”
This notion is formalized in a protein homology
network, which is a network whose vertices
represent proteins and whose edges represent
significant amino acid sequence similarity relation-
ships between pairs of the proteins.”'®" Such a
network captures much of the history of gene
evolution,  including evidence of  gene
duplications,®*'  deletions,” fusions,”? ** and
fissions,* that is preserved in the sequences of
current day genes.

We expect such networks to be highly struc-
tured. Intuitively, proteins in a sequence family
should be more similar to each other than to unre-
lated proteins. Likewise, a fusion protein will
often exhibit similarity to each of its components’
respective protein families, even though the
families show no similarity to each other. In such
cases, the fusion may represent the rare merger of
disparate sequences, or the more common
tendency for domains to rearrange or swap
(“domain promiscuity”?). Proteins grouped by
their similarities should therefore cluster into
sequence families linked occasionally by fusion
proteins. These fusion proteins, termed Rosetta
Stone proteins,” tend primarily to link proteins of
related function,?**** so by a simple extension
of this Rosetta Stone principle, we might expect
that organizing proteins by their sequence
similarities would simultaneously organize them
according to cellular pathways and functions.
Therefore, a map in which proteins are spatially
positioned according to their sequence similarities
should directly reveal protein function.

As projective methods,” clustering
algorithms,'®'%% and distance-preserving
algorithms®® do not preserve the organization
induced by fusion proteins, we have instead opted
for a network visualization approach to create the

map. Portions of such homology networks have
been visualized,” but the homology networks’
large scale makes them difficult to visualize in
their entirety. The LGL algorithm was developed
to make visualization of such large biological net-
works tractable, as well as aesthetically pleasing
and informative for networks with complex
internal structures. We apply LGL to create a map
for the complete set of 145,579 proteins from 50
genomes and demonstrate that the map effectively
captures protein function information, and that
genes’ functions can be directly discovered from a
map in which genes are organized according to
historic genetic events of gene duplications,
deletions, fusions, and fissions.

Results
The LGL network layout algorithm

LGL is based on a mass-spring algorithm where
edges play the role of springs pulling together
vertices, treated as masses, into highly connected
clusters. For any given set of data, LGL works in
two distinct phases. The first phase of LGL
generates 2D (or 3D) coordinates of each vertex in
space in a process known as the network layout.
The layout consists of three stages: (1) separation
of the original network into connected sets (sets of
vertices that are reachable by each other by
traversing the edges connecting them); (2) gener-
ation of spatial coordinates for each vertex in each
connected set (laying out each connected set inde-
pendently); and (3) integration of the connected
sets into one coordinate system.

A side effect of using springs to simply pull
together masses is that masses can stack on top of
each other unless a repulsive force, such as another
spring term, forces the vertices apart. One may
imagine the repulsive term as radially directed
springs attached to vertices to push away any
proximal vertices (see Methods). To calculate the
repulsive term efficiently, the vertices are placed
in a grid where the voxels are only slightly larger
than the repulsive spring lengths. A spatially
localized repulsion term such as a spring only
requires a local inspection of each vertex, which is
equivalent to inspecting only neighboring voxels.
The computational complexity depends on the
grid size and the density of the vertices in the
grid, but ranges from an upper limit of O(1?)
down to O(n), representing considerable com-
putational savings over the exhaustive inspection
of all vertices for proximity.

Attractive and repulsive forces are calculated for
each vertex as described in Methods, and finally
summed for all vertices. The positions of the
vertices are then updated using the simple
relationship: Xpew = Xl + Fiotal df. This relation-
ship is not physical, as Fi now has the appear-
ance of velocity and not force when compared to
Newton’s equations of motion. However, using
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this relationship precludes any need for an energy
dissipation term, and allows the algorithm to
avoid tracking vertex velocities. Occasionally, two
vertices superimpose, in which case they each
receive a small constant force term in a random
direction.

Empirical tests of layouts of very large networks
based only on summing forces from random initial
conditions, even with pre-clustering by connec-
tivity, cannot typically reveal global structure for
complex networks, due to the high number of
overlaid edges. As biological networks are often
quite dense, and layouts based only on the spring
algorithm tend to be difficult to interpret, we
employ a strategy shown to effectively separate
dense networks.* During the process of generating
spatial coordinates for each vertex, we use a guide
tree to determine the order in which vertices are
included in the spring force layout calculations.
Vertices from a single connected network are laid
out iteratively starting with a root vertex and
incorporating additional vertices as guided by a
minimum spanning tree (MST) of the network.
The MST is defined as the minimum set of edges
necessary to keep the network connected, where
each edge is weighted by its associated BLAST
E-value, and the sum of all the weights of the
edges in the tree are minimized.

Briefly, the MST is generated by ranking the
edges by ascending weights and marking each
edge if it does not create a cycle with any
previously marked edge. When this process is
completed, the marked edges form the minimally
spanning tree of the network, with a total of N — 1
edges connecting N vertices. The MST determines
the order of placement of the vertices, giving
preference to vertices closer to the root vertex. The
root vertex, which can be chosen arbitrarily or
based on its centrality in the network, is assigned
to level 0. All other vertices are then assigned a
level according to their edge-based distance in the
MST from the root vertex, setting the order in
which they will be incorporated into the layout.
Using this guide tree-based layout strategy allows
the network layout to come to equilibrium in a
manner which preserves the structure of central
network components and which reduces cluttering
from adjacent vertices.

The layout begins with the root vertex (the level
0 vertex), placed in the center of the grid and
flanked radially by all child vertices (level one
vertices), as drawn in Figure 1. A sphere (in the
general case, for 2D layouts, a circle is used) is gen-
erated with the root vertex at the center, and level
one vertices are placed in random locations on the
surface of the sphere. Network edges are intro-
duced, where appropriate, between vertices
present at this iteration (level) of the layout. Note
that all network edges are ultimately considered
for the layout, not just those in the MST, which
serves only to set the order in which vertices are
incorporated. The system progresses through time,
calculating attractive and repulsive terms until
positions of the vertices change negligibly with
respect to the positions in the preceding time step,
whereupon the next level of vertices specified by
the MST are added, and the system is minimized
again. This process repeats until the layout is com-
plete, all vertices and edges have been added, and
vertices have moved to equilibrium positions.

Following the layout of all connected sets, the
individual layouts from disconnected subnetworks
are integrated into a single coordinate system via a
funnel process: the connected sets are sorted in
descending size by the number of vertices. The
first connected set is placed at the bottom of a
potential funnel and other sets are placed one at a
time on the rim of the potential funnel and allowed
to fall towards the bottom where they are frozen in
space upon collision with the previous sets. This
process is applied sequentially to each connected
set. Since the disconnected networks share no
relationship between each other (by definition,
they share no edges), the integration step is arbi-
trary, serving only to provide space between the
connected sets.

Applying LGL to visualize a global protein
homology map

We have used LGL to visualize the results of
approximately 21 billion amino acid sequence com-
parisons, made using the program BLAST, of
145,579 amino acid sequences from 50 completely
sequenced genomes, including ten archaeal, 37
bacterial, and three eukaryotic genomes. The
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Figure 1. Successive iterations of the layout. Level one vertices (red circles) are placed randomly on a sphere around
the root node (black circle). The system is allowed to iterate through time satisfying attractive and repulsive forces
until at rest. Level two nodes (blue circles) are placed randomly on spheres directed away from the current layout.
Again, the system is allowed to evolve through time till at rest. This process is iterated for the entire graph.
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Figure 2. A protein homology map summarizes the results of billions of sequence comparisons by modeling the
proteins as vertices in a network, and the statistically significant sequence similarities as edges connecting the relevant
proteins. In this manner, proteins within a sequence family (such as A, A/, A”, and AB; or B, B’ and AB) are all or
mostly connected to each other, forming a cluster in the map. Fusion proteins (such as AB) serve to connect their
component proteins’ families. The structure of the resulting map reflects historic genetic events, such as gene fusions,
fissions, and duplications, which are responsible for producing the modern-day genes. The map simultaneously
represents homology relationships (edges), remote homologies (proteins not directly connected but in the same
cluster), and non-homologous functional relationships (adjacent clusters and clusters linked by fusion proteins).

results were interpreted as a large biological
network, where each protein was represented as a
vertex (as described in Figure 2), and each signifi-
cant BLAST similarity was represented as an edge
connecting the corresponding proteins. The

proteins (i.e. not by the results of a clustering
algorithm, but by the placement of highly inter-
connected proteins close to each other in the map).
This general approach is known to effectively
identify both close and distant sequence
homologs.***3273* The extensive occurrence of
fusion proteins, along with gene duplications,

resulting network, seen in Figure 3, has a complex
structure, with extensive clustering and inter-

connections that derive from the diverse evolution-
ary histories of the proteins. As expected, families
of similar proteins form clusters in the map that
emerge from the high interconnectivity of the

serves to organize the proteins in the protein
homology map.

About a third to half of the proteins in the data-
base are linked together by such chains of fusions,

Figure 3. The complete protein
homology map. A layout of the
entire protein homology map; a
total of 11,516 connected sets con-
taining 111,604 proteins (vertices)
with 1,912,684 edges. The largest
connected set is shown more clearly
in the inset and is enlarged further
in Figure 4.
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depending upon the BLAST threshold used to
calculate the protein homology map. For example,
at the BLAST threshold of E <107° 62,828
proteins are linked together into a single connected
subnetwork, indicating that at least 43% of the
proteins in the combined proteome are connected
by the transitive occurrence of gene fusions. In
Figure 3, 30,727 proteins are linked into a single
connected set using the BLAST threshold of
E <1072, The remaining proteins are found in
one of the other 11,516 connected sets: the next
largest connected set at this threshold contains
only 973 proteins, and 33,975 of the remaining
proteins have no links in the map, corresponding
to ORFans® without detectable sequence homologs
at this BLAST threshold.

Within a connected subnetwork, such as the
connected subnetwork of 30,727 proteins enlarged
in Figure 4, we expect network organization to be
dictated by homology relationships and fusion
proteins, resulting in an organization of proteins
into sequence families that are themselves
organized by function, since protein families
linked by such fusion relationships are generally
functionally related. We have devised several
tests, based upon both extensive manual inspection
of the map and quantitative measurement, which
confirm that this is indeed the case. First, visual
examination of the map revealed many linked,
functionally related clusters; several such clusters
are expanded and labeled in Figure 5. Adjacent
clusters can be seen to have similar function, and
proteins” functions change only gradually across
the map. Figure 5A shows an example of Rosetta
Stone linked proteins such as those diagrammed
in Figure 2, in which one fusion protein links the
two separate protein families. Figure 5B shows

Core ATP binding cassettes
Metabolism

. 4 Ser/Thr & Tyr
T protein kinases

"o DNA Maintenance &
Replication

position in the map; for example, the “domain of unknown function 1” family

~ Signal Transduction

Two-component
sensor histidine

Domain of Unknown
Function 1 (DUF1)

extended Rosetta stone links between functionally
related protein clusters. The linked proteins are
known to associate with one another to form active
pyruvate synthase and a-ketoglutarate:ferredoxin
oxidoreductase complexes. Figure 5C shows a
more extensive spatial persistence of function: the
proteins on the left side of the Figure are involved
in acetyl CoA metabolism; towards the right of the
Figure, the function is still metabolic but shifts
towards related metabolisms, such as that of
amino acid residues and carbamoyl phosphate.
Examination of other such examples supports the
notion that broad regions of the map correspond
to general protein functional categories, as labeled
in Figure 4.

Second, we compared the functional similarity of
pairs of proteins to their spatial separation in the
map. For example, examining the subset of
Escherichia coli proteins in the largest connected
subnetwork for which biochemical function is
known (via assignments in the KEGG pathway
database®) reveals that, on an average, proteins
linked by Rosetta Stone proteins are in the same
pathway 75% of the time, compared to 4.7% for
random pairs of the same E. coli proteins. Thus,
we expect functional similarity should persist
across space in the map. Employing a set of general
protein function annotation, the clusters of ortho-
logous groups (COGS)"* annotations, Figure 6
shows that for pairs of proteins sharing no direct
connection in the map, the tendency of the proteins
to be in a related pathway extends beyond a typical
cluster size. Although these values must be
calibrated for each layout, for the map in Figure 4,
the correlation length extends well beyond the
typical cluster size (defined as the unit distance
and corresponding to the spring equilibrium

Figure 4. A map of gene function
emerges from ~21 billion gene
sequence comparisons. Proteins are
drawn as points, with lines connect-
ing proteins with similar sequences,
and are arranged so that homo-
logous proteins are adjacent in the
Figure. The size of each cluster is
proportional to the number of
proteins in that sequence family.
Fusion proteins force their com-
ponent proteins’ respective families
to be close together in the Figure,
and thereby serve to organize the
proteins in the map according to
their functions. The resulting broad
trends of protein function are
labeled, as are several of the most
extensive sequence families. A-C
indicate specific regions that are
magnified in Figure 5. The general
function of uncharacterized
proteins can be found from their
is associated with proteins involved

kinases

38-40

in signal transduction. For clarity, only the greatest connected network component is drawn, containing 30,727 proteins
(vertices) and 1,206,654 significant sequence similarities (edges), and representing ~4 billion sequence comparisons.
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Figure 5. Functionally related gene families form
adjacent clusters in the map. Three examples illustrate
spatial localization of protein function in the map,
specifically A, the linkage of the tryptophan synthase a
family to the functionally coupled but non-homologous
B family by the yeast tryptophan synthase af fusion
protein, B, protein subunits of the pyruvate synthase
and alpha-ketoglutarate ferredexin oxidoreductase com-
plexes; and C, metabolic enzymes, particularly those of
acetyl CoA and amino acid metabolism.

length, thus a typical grouping of proteins in the
map will have a diameter roughly equal to the
spring equilibrium length). The functional
similarity f decays exponentially with increasing
distance d across the map, with f=/f;e ™™ and
k=026, fo =0.68. The measured decay curve
implies that neighboring clusters are ~52% likely
to operate in the same broad category of cellular
system, consistent with the high degree of func-
tional similarity of proteins linked by gene fusions
observed with the KEGG annotation.

The organization of proteins by function forces
broad cellular processes to localize in the map. To
investigate the conservation of protein function
across the network, proteins in the network were

labeled in Figure 7 according to the four primary
classes of function assigned to the proteins in the
COGS database:'”* information storage and pro-
cessing, general cellular processes, metabolism,
poorly characterized or unknown functions.
Previous analyses have shown that clusters in pro-
tein homology networks represent protein
families,'®" and directly linked proteins (homo-
logs) in our map share one of the four major
COGS functional categories 88% of the time. Visual
inspection of our map reveals that members of
such clusters are typically associated with the
same COGS function, as expected. Adjacent
clusters tend strongly to be of the same function,
as illustrated by chains of functionally related
protein families in Figure 7 and shown quanti-
tatively in Figure 6. Empirically, we observe the
smaller connected sets (Figure 3) to almost
exclusively represent single protein families of
similar function.

Components of information storage and
metabolism are strongly localized: proteins
involved in transcription, translation and DNA
replication preferentially occur near the bottom
left, signaling systems towards the center and
right, and metabolism towards the top. Proteins
with unknown functions show the least positional
bias and are relatively evenly distributed across
the map.

Because proteins are organized by their func-
tions, the function of uncharacterized protein
families can be read directly from the map.
Examples are shown in Figures 4 and 5. In
Figure 5C, the ybg] family of proteins, also known
as the “domain of unknown function 213” family
(DUF213), can now be assigned a role in core
metabolism, potentially linked to acetyl co-A
metabolism. Additionally, the bacterial-specific
domain of unknown function 1 family (DUF1) is
of unknown function but is implicated in
signaling.*®"* In Figure 4, the DUF1 family is
located adjacent to many other proteins of signal
transduction, and is especially tightly coupled to
two component sensor kinases, implicating these
proteins in bacterial signal transduction via inter-
actions with sensor kinases. Other examples (not
shown) include two families of conserved,
uncharacterized proteins, the MJ1359 and rtcB
families, which can be assigned a general role in
DNA/RNA maintenance based on their global
position in the map. The MJ1359 family is linked
to DNA repair. The rtcB family, also known as the
UPF0027 uncharacterized protein family,*' is a con-
served gene family of unknown function; here, we
link these proteins to helicase and DNA polymer-
ase I activity. Predicted functions for 23 uncharac-
terized protein families are listed in Table 1.

Discussion

In summary, we present an algorithm for the
effective visualization of very large biological
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networks, based on iterative spring-based layout  networks (Figure 8). We apply the LGL algorithm
guided by a MST of the network. We show that to explore an approach for studying protein—
this strategy is extremely effective for clearly = protein relationships by sequence comparisons,
visualizing the complex internal structure of large  rather than analyzing a few sequences at a time, a

C Metabolism Tt Uncharacterized

Figure 7. Extended map regions are composed of proteins of related function. The plot shows proteins from the four
major functional classes defined in the COG database highlighted (bold vertices) within the protein homology map
(gray lines). Adjacent regions of the map tend to include proteins that operate in the same broad cellular processes.
Proteins not classified in COGs or defined in multiple COG categories are not highlighted.
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Table 1. Functions assigned to uncharacterized protein families on the basis of adjacent characterized protein families

observed in the global protein homology map

Uncharacterized protein family

Predicted function

MJ1633 family of conserved hypothetical proteins

YhfB family of conserved hypothetical proteins

MG371 family of conserved hypothetical proteins

HI1730 family of conserved hypothetical proteins

Domain of unknown function DUF213

YbaE family of conserved hypothetical proteins

PA1729 family of conserved hypothetical proteins

mll8746 family of conserved hypothetical proteins

Pfam domain PF01549 family, also called DUF 18 domain of
unknown function

Rv0867c family of conserved hypothetical proteins

Tubby protein family

yebA family of conserved hypothetical proteins

Uncharacterized protein family UPF0036
Uncharacterized protein family UPF0028

Uncharacterized protein family UPF0130

Vngl1117c family of conserved hypothetical proteins

Three protein families tightly linked in map: domains of
unknown function DUF1 and DUF2, and GGDEF proteins.
The proteins group into three tightly overlapping regions in
the map

M]J1359 protein family of conserved hypothetical proteins

Pfam domain PF02206 and PF01757 protein families
Uncharacterized protein family UPF0027 (also known as rtcB

family proteins)
Uncharacterized protein family UPF0051

Function linked to yhfB and MG371 families, inferred connection
to nucleotidyl transferase activity (specific links to poly(A)
polymerase and tRNA nucleotidyl transferase activities)

Function linked to MJ1633 and MG371 families, inferred
connection to nucleotidyl transferase activity (specific links to
poly(A) polymerase and tRNA nucleotidyl transferase activities)

Function linked to MJ1633 and yhfB families, inferred connection
to nucleotidyl transferase activity (specific links to poly(A)
polymerase and tRNA nucleotidyl transferase activities)

Involved in core metabolism, precise function linked to activity of
amidases and three component alpha,beta,biotin carboxylases
and DUF213 family

Involved in core metabolism, precise function linked to activity of
amidases and three component alpha,beta,biotin carboxylases
and HI1730 family

Metabolism, linked to phosphoglycerate mutase (glycolysis),
genes of tryptophan synthesis, periplasmic peptide binding
proteins, and PA1729 family

Metabolism, linked to phosphoglycerate mutase (glycolysis),
genes of tryptophan synthesis, periplasmic peptide binding
proteins, ybaE family, and mll8746 family

Metabolism, linked to phosphoglycerate mutase (glycolysis),
genes of tryptophan synthesis, periplasmic peptide binding
proteins, ybaE family, and PA1729 family

Cell-wall/membrane metabolism or degradation, linked to
chitinases, lipoproteins and endopeptidases

Cell-wall/membrane metabolism or degradation, linked to
chitinases and glycosyl hydrolases

Involvement in oxidative stress response, with linkages to
redoxins

Membrane or cell wall associated systems, inferred link to lipo-
proteins and/or sugar epimerase activities, and uncharacterized
protein family UPF0036

Membrane or cell wall associated systems, inferred link to yebA
conserved hypothetical protein family and monooxygenases

Involved in cell surface and transport, and linked to trans-
membrane drug efflux proteins and ftsA cell division proteins

Inferred membrane/lipid-related function, linked to myrosinase-
binding protein and jasmonate-inducible protein homologs and
Vngl117c family conserved hypothetical proteins

Inferred membrane/lipid-related function, linked to myrosinase-
binding protein and jasmonate-inducible protein homologs and
UPF0130 uncharacterized protein family

Tightly linked to signal transduction, especially to two component
sensor kinases

General role in DNA/RNA maintenance, linked in map to DNA
repair and glucosyl transferases

Membrane-related function, linked to membrane transport
proteins, as well as Pfam PF01838 proteins and UPF0051 proteins

General role in DNA /RNA maintenance, function linked to
helicases and DNA replication/repair

Linked to Pfam PF02206, PF01757, and PF01838 protein families

map of proteins is created from billions of
sequence comparisons. Although construction of
such protein homology networks has been used to
identify distant members of protein sequence
families,”19%32-3% ywhen visualized in the manner
we describe, the presence of fusion proteins
induces a higher order structure to the map and
serves as one of the dominant forces dictating the
arrangement of the protein families.

Gene fusions have been used to suggest protein
interactions,?>*?>?° but the extent to which the
fusions occur has been difficult to appreciate. The

map makes clear the ubiquity of such fusions.
Beyond simply summarizing information from
fusions alone, the map effectively serves as a single
qualitative, unifying theoretical framework for
inferring protein function, which incorporates
protein sequence homology (through direct map
edges), remote sequence homology (as proteins
not directly connected but in the same cluster),
gene fusions (as linked clusters), and transitive
gene fusions (as chains of linked clusters). The
absences of detectable homology and fusions are
also captured in the network, and these “negative”
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Figure 8. A comparison of LGL with map layouts pro-
duced by other algorithms. The layout of the protein
homology map by LGL (A) is contrasted with the layout
of the same network by the spring-force algorithm only,
lacking the minimal spanning tree calculation and
iterative layout procedure (B), and with the layout by
the approach of InterViewer® Interviewer collapses
equivalent nodes into single nodes, thereby simplifying
the graph, and is one of the few available graph layout
programs that scales to such large networks. The layout
from LGL reveals more of the internal graph structure
than the other approaches tested.

trends also influence the layout. The spatial layout
of this map represents the simultaneous satisfac-
tion of all of these constraints, each constraint
providing functional information about the
proteins. Possible functions of uncharacterized
proteins may then be suggested from their pos-
itions in the resulting map. Systematic analysis of
this sort may indicate new connections between
cellular systems, aid discovery of protein func-
tions, as well as visually illustrate the complex
evolutionary histories of genes and proteins.

An interesting question is how promiscuous
domains,” which are essentially domains found
fused to numerous other domains, affect this
approach. Such domains should have the effect of
organizing many proteins around them. It is likely
that this trend accounts for the central location of
the protein kinases in Figure 4. We suspect that
predicting function with the protein homology
map may be more appropriately applied to non-

promiscuous domains, although it is possible
that as the sequence similarity threshold used to
create the map becomes more stringent, such
promiscuous domain families may be broken up
into subfamilies, and the effects of the promiscuity
on the layout consequently reduced. In this con-
text, it may prove interesting to compare protein
homology maps generated only from eukaryotic
genomes to maps generated from prokaryotes to
see how the enhanced eukaryotic propensity for
multidomain proteins affects the map structure.

The algorithm used to visualize such a large
graph clearly affects the functional inferences
drawn. Beyond the choice of algorithm, the dimen-
sionality of the map is important as well, as the
protein homology network itself is actually a high
dimensional mathematical object, likely to be sub-
stantially distorted when visualized in only two or
three dimensions. Although we have chosen two
dimensions for the work presented here, it is
reasonable to expect that higher dimensional
spatial layouts could perform better for preserving
the relationships in the data and therefore for
predicting protein function, although the visual
interpretation of such maps would clearly be
much more difficult. We have chosen the above
approaches largely to illustrate the concept; the
choice of dimensionality and layout algorithm par-
ameters can be optimized in the future for better
functional prediction. However, the analysis pre-
sented here demonstrates the potential of LGL for
exploring sequence and functional relationships
among extremely large sets of proteins. Other
applications include visualizing genome or EST
sequence assemblies, protein interaction, metabolic
or regulatory networks; and other applications that
would benefit by visualizations of large graphs.
Due to its scalability, LGL has recently also been
applied by the Opte Project to visualize the struc-
ture of the Internetf.

Methods

Calculating the total force on a vertex

The total force produced by the attractive and
repulsive forces on any one vertex u for each time step
is calculated as:

Fu,total = Fu,attractive + Fu,repulsive

=Y (RKl-a-kY X% -n @O
i=1 =0

with k; = 0 for lx;| > r, where k, and k, are the attractive
and repulsive spring constants, a is the equilibrium
length of the spring connected to adjacent vertex i, I%; is
the Euclidean distance of separation between the two
vertices sharing the edge (the spring), e is the number of
edges connected to vertex u, I%jl is the distance of separ-
ation between the current vertex and a neighboring

thttp:/ /www.opte.org
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vertex j, and m is the number of localized vertices satisfy-
ing Ix;| < r. The repulsive spring force is only applicable
if any two vertices are closer than r, hence its force is
always positive (repulsive).

The iterative network layout algorithm

The network layout is guided by the MST, which uses
the BLAST E-values as weights. First, the MST is deter-
mined for the network using Kruskal’s algorithm.*> The
MST is used to guide the progression of the layout start-
ing at the root vertex, vy, which is the first vertex in
the network to be assigned coordinates. The root vertex
can be arbitrarily selected to emphasize different aspects
of the network, or can be chosen depending on the
centrality of the vertex in the network. In the latter case,
the root vertex is defined by identifying the vertex that
minimizes the number of edges that must be traversed
in the MST to reach every other vertex. More precisely,
Uroot = min(zmmev d(v,u)), where d(v,u) is the mini-
mum number of edges that vertex v must traverse to
reach another vertex u. After generating the MST, each
vertex is then assigned a level based on the MST, which
is simply d(Vroot, 1). For example, the root vertex is level
zero and its adjacent vertices, vertices that it shares an
edge with in the MST, are level one; level two vertices
would then be adjacent to level one vertices, but not
included in a previous level.

Starting with vro0, each level is laid out in turn as dia-
grammed in Figure 1. Each successive iteration proceeds
until vertex positions change by less than a distance
threshold of approximately 107 units, with an iteration
limit of 150. The next layer of vertices from the MST is
placed onto the grid on the surface of a new sphere,
Schild, using the linear combination of two vectors. The
first vector is the current layout center of mass, M, and
the other vector is P, the one separating the parent
verteX, Xparent at current level —1, and the grandparent,
Xgrandparent at current level —2. The equation to place the
next level (children of a given vertex) onto a sphere at
position S is then proportional to the sum of those two
vectors M and P:

- P
Schild = C(% + W) + Xparent (2)
_ 1 ~
M- Y %

| chrrent I vEV.

current

P = 2parent - %grandparent

where ¢ is a constant, IMl is the magnitude of M, Pl is
the magnitude of P, Vywrent represents all vertices in the
current layout, and |Veypent! is the number of vertices in
the current layout. Again, edges are introduced between
the vertices present at this stage of the layout. This three
step process: placing the children of a vertex on a sphere
according to equation (2); edge repopulation; and
position refinement according to equation (1), continues
until all vertices of the original network are at rest on
the grid.

Layout visualization

We developed a stand-alone Java program, Iglview, to
interactively display and explore the resulting 2D net-
works from a given layout. This program allows searches
for vertices, coloring, labeling and zooming into edges

and vertices. For 3D layouts, a Perl program, genVrml.pl,
was developed to represent networks in virtual reality
modeling language (VRML), which is subsequently
viewed through one of the many VRML browsers freely
available on the Internett. Combinations of 3D spatial
layout and VRML were used for interactively visualizing
networks with fewer than 20,000 edges due to high
memory allocation of the visualization process. Both the
2D network viewer and the program to prepare
coordinates for VRML are freely available for
downloadi.

Generating the protein homology map

To construct the map, we compared the amino acid
sequences of each of the 145,579 known proteins from
50 complete genomes (from the NCBI Entrez Genome
web site) with each other using the program BLASTP,"
using default settings. The results of these ~21 billion
comparisons were summarized as described in Figure 2:
each protein was represented as a vertex in a network,
and each significant BLAST similarity was represented
as an edge connecting the corresponding proteins. This
produces a directed network, since the edges have direc-
tion: the score from protein a to protein b, and the score
from protein b to protein a. The network was converted
to an undirected network by creating a single edge
between two connected proteins and retaining the more
significant of the two BLAST E-values as the weight.
Layout with LGL required 211 minutes on an Intel
Pentium single processor computer.

Several protein homology maps were calculated corre-
sponding to different BLAST score thresholds ranging
from 1 X107* to 1 X 10™*. Our general findings are con-
sistent regardless of threshold; we present results for the
map with highly significant BLAST expectation scores of
<1 x 10" The list of genomes included in this analysis
is included as Supplemental Material (Table 1), while
the lists of genes, the protein homology map, and sup-
porting data are available§.

Calculation of functional similarity

Functionally similar proteins were defined as proteins
with mutual membership in one of the known 18 COG
categories.”””” The functional similarity across a map
region was calculated as the probability of two proteins
belonging to the same COG category as a function of
Euclidean distance between proteins, with distance in
units of typical cluster size and equal to the spring equi-
librium distance of equqtion (1). Proteins that fall within
a multiple of the unit distance are binned, so the func-
tional similarity between two proteins as a function of
the distance in the map between the proteins, FS(c), is
equal to:

1
FS(C) = ﬁ PC
¢ =1

i=

where ¢ is the binned Euclidean distance between two
proteins rounded up to the nearest integer, N, is the
number of COG annotated protein pairs in distance bin
¢, and P. is the number of annotated protein pairs with
the same COG category in distance bin c.

thttp:/ /www.web3d.org
i http:/ /bioinformatics.icmb.utexas.edu/Igl
§http:/ /bioinformatics.icmb.utexas.edu/phg
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