
1

BCH394P/364C Systems Biology/Bioinformatics Spring 2021 Marcotte
A Python programming primer

Python: named after Monty Python’s Flying Circus
 (designed to be fun to use)

Python documentation: http://www.python.org/doc/ & tips: http://www.tutorialspoint.com/python
Good introductory Python books:

Learning Python, Mark Lutz & David Ascher, O’Reilly Media
Bioinformatics Programming Using Python: Practical Programming for Biological Data,

Mitchell L. Model, O'Reilly Media
There are some good introductory lectures on Python from the Kahn Academy:

https://www.youtube.com/user/khanacademy/search?query=python
& Codeacademy ($$ for Python 3): https://www.codecademy.com/learn/learn-python

A bit more advanced: Programming Python, Mark Lutz, O’Reilly Media

Although programming isn’t required to do quite a bit of bioinformatics research, in the end you always
want to do something that someone else hasn’t anticipated. For this reason alone, if for no other, I’d
recommend learning how to program in some computer language. For bioinformatics, many scientists
choose to use a scripting language, such as Python or Perl. These languages are relatively easy to learn
and write. They are not the fastest, nor the slowest, nor best, nor worst languages; but for various
reasons, they are well-suited to bioinformatics. Other common languages in the field include R and
perhaps C/C++ and Java.

If you think only about handling biological data, it tends to be on the extensive side. For example, the
human genome is about 3x109 nucleotides long, so even at only 1 byte per nucleotide (i.e., letter), this
runs to about 3 GB worth of data. In one of our various databases in the lab, we have about 1300 fully
sequenced genomes, encoding about 4 million distinct genes. These are mostly bacterial genomes,
which are smaller, so all of this takes up a bit under 10 GB worth of disk space. Other of our various
collections of data occupy ~60 TB (terabytes) of disk space. Obviously, handling data in a convenient
and fast manner is often a practical necessity. A typical bioinformatics group might store its data in a
relational database (for example, using the MySQL database system, whose main attractions are that it
is simple to use and completely free) and will do most analyses in Python, Perl, R, or even C++. We
won’t spend time talking about MySQL, C++, etc., but will spend the next few lectures giving an
introduction to Python. This way, you get (1) at least a flavor for the language, and (2) we can
introduce the basics of algorithms.

Starting with some example programs in Python:
Programs in Python are written with any text editor. If you really wanted to, you could program one in
Notepad or Google Docs, save it as a text file, then run it on a computer that has the Python compiler.
We’re going to be using the Python Integrated Development Environment (IDE) that you installed in
the first homework assignment on Rosalind. The filename (at least on Windows machines) is called
“IDLE (Python GUI)”. Open this, and let’s start exploring.

A Python program has essentially no necessary components. So, a very simple program is:
print("Hello, future bioinformatician!") # print out the greeting

That’s it! Type this into your IDLE Python shell (a “shell” in computing is a user interface, often
command line-based, i.e. you type in commands at a prompt).

2

The command you just typed in will be executed and the output in the IDE looks like this:

Hello, future bioinformatician!

Rather than just type in sequential commands, we can write an entire program and save it to be run
later. In IDLE, you can do this by opening a new window (File -> New File), then typing in your
program into the new window and saving it (File -> Save As). Let’s call it hello.py . (The names of

Python programs traditionally end in .py .) You can then run the program (Run -> Run module), and in
the main Python shell, you should again see the results of your program.

Notice the comment after a pound sign. Python ignores everything written after a pound sign, so this is
how you can write notes to yourself about what’s going on in the program. The only real command
we’ve given instructs Python to write (print()) what you have placed between the quotes on the
computer screen.

Let’s try a slightly more sophisticated version:

name = input("What is your name? ") # asks a question and saves the answer

 # in the variable "name"

 # note that this is Python 3+ format

 # Python 2.x uses raw_input()

print("Hello, future bioinformatician " + name + "!") # print out the greeting

This is a bit more complex. Type this in & save it as hello2.py. When you run it this time, the output

looks like:

What is your name?

If you type in your name, followed by the enter key, the program will print:

Hello, future bioinformatician Alice!

So, we’ve now seen one way to pass information to a Python program. Going through the program line
by line shows:
Line 1: This is a specialized Python (3+) command called input (or in Python 2.x, raw_input), which

prints a line without a newline, then saves what you type into a variable called name. Note that if you

wanted a new line, you could do name = input("What is your name?\n") . The \n indicates a new line.

Lines 2-4: More notes to ourselves
Line 5: Lastly, we print out the message, but this time with your name included. This is one of a
variety of ways of printing the value of a variable, here by simply including it in a print statement.

Okay, so now we’ve seen two very simple Python scripts. Quite a few programs can be written that just
read in and print out information. Although we read in information from the keyboard (e.g. when you
typed your name in), it’s not much harder in Python to read it in from a file, so you can go a long ways
with this general level of programming. However, we’d like to get to the point where we can do some
calculations as well, so let’s look at the main elements of programs, so that we can eventually write a
program that actually does something more interesting than just printing or reading a message.

A note about versions: Until quite recently, most bioinformaticians used Python 2.7 (hence,

3

Rosalind’s use of it). There are some subtle but important differences between Python 3+ and Python
2.7 which mostly won’t matter to you at this stage. I’ve written this note using a version agnostic
format, but if you have problems running the scripts, you might check your version number, e.g. in
IDLE (Help -> About IDLE). If you stay in the field, expect to learn Python 3 (or 4, when it comes out).

Some general concepts:
Names, numbers, words, etc. are stored as variables. Variables in Python can be named essentially
anything, as long as you don’t pick a word that Python is already using (e.g., print). A variable can

be assigned essentially any value, within the constraints of the computer, (e.g.,
BobsSocialSecurityNumber = 456249685 or mole = 6.022e-23 or password = "7 infinite

fields of blue").

Groups of variables can be stored as lists. A list is a numbered series of values, like a vector, an array,
or a matrix. Lists are variables, so you can name them just as you would name any other variable. The
individual elements of the list can be referred to using [] notation. So, for example, the list

nucleotides might contain the elements nucleotides[0] = "A", nucleotides[1] = "C",

nucleotides[2] = "G", and nucleotides[3] = "T". By convention, lists in most scripting
languages start from zero, so our four-element array nucleotides has elements numbered 0 to 3.

Lastly, there’s a VERY useful variation on lists called a dictionary or dict (sometimes also called a
hash). Dictionaries in Python are groups of values indexed not with numbers (although they could be)
but with other values. Individual dictionary elements are accessed like array elements. For example,
we could store the genetic code in a dictionary named codons, which might include 64 entries, one for
each codon, such as codons["ATG"] = "Methionine" and codons["TAG"] = "Stop codon".

These are the three most frequently-used types. Now, for some control over what happens in programs.
There are two very important ways to control programs: if statements and for loops.

if statements
Very often, one wishes to perform a logical test. This is usually done with an if statement or
command. An if command applies Boolean logic to a statement, then performs a different task

depending on the logical result. So, we might be looking at a DNA sequence and then want to ask:
If this codon is a start codon, start translating a protein here.
Otherwise, read another codon.

The Python equivalent of this might be:

if dnaTriplet == "ATG":

 # Start translating here. We’re not going to write this part since we’re
 # really just learning about IF statements
else:
 # Read another codon

The logical test follows the if statement. If true, Python executes the commands on the lines following
the if … :. If false, the commands following the else: (which is optional) are run. Note that Python

cares about white space (tabs & spaces) you use; this is how it knows where the conditional actions
that follow begin and end. These conditional steps must always be indented by the same number of

spaces (e.g., 4). I recommend just using a tab (rather than spaces) so that you’re always consistent. A
nice consequence of this rule is that your code (and that from other people) will be highly readable.

4

Don’t underestimate how important readability is!

The following logical arguments can be used:
== equals
!= is not equal to

< is less than
> is greater than

<= is less than or equal to
>= is greater than or equal to
and several others. Multiple tests can be combined by putting them in parenthesis and using Boolean
operations, such as and, not, or or, e.g.:
if dnaTriplet == "TAA" or dnaTriplet == "TAG" or dnaTriplet == "TGA":
 print("Reached stop codon")

for loops

Often, we’d like to perform the same command repeatedly or with slight variations. For example, to
calculate the mean value of the number in an array, we might try:

Take each value in the array in turn.
Add each value to a running sum.
When you’ve added them all, divide the total by the number of array elements.

Python provides an easy way to perform such tasks by using a for loop.

grades = [93, 95, 87, 63, 75] # create a list of grades

sum = 0.0 # variable to store the sum

for grade in grades: # iterate over the list called grades

 sum = sum + grade # indented commands are executed on

 # each cycle of the loop.

mean = sum / 5 # now calculate the average grade

print ("The average grade is ",mean) # print the results, Python 3+ format-wise

 # Python 2.x would place ‘mean’ outside the parentheses, like so:

#print ("The average grade is "),mean # print the results, Python 2.x format-wise

for grade in grades tells Python that it should visit each element in the grades list and should call
that element grade for the current loop cycle. Lines which are indented following the for line are
repeated during each cycle. This means that Python will perform the sum operation for each of the
elements of grades. Note that Python will perform most mathematical operations, such as

multiplication (A * B), division (A / B), exponentiation (A ** B), etc. (Don’t worry about it for
now, but down the line, one of the really nice features of Python that you will be able to take advantage
of is that it has very extensive mathematical capabilities built into it.)

Python keeps track of whether numbers are to be considered integers or floating-point (also long
integers and complex numbers). You can often indicate to Python that you want floating-point by first
defining your variables in that manner (e.g., X = 1.0 versus X = 1). In the program above, our first
use of the variable sum set it to be a floating-point number. This is yet another version difference:
defining sum as sum = 0 in the above program in Python 2.x, but not 3+, would give integer averages.

These are the two most important ways of controlling a Python program. Another very useful control
mechanism is the function, but you’ll have to learn these on your own as your code gets more
sophisticated!

5

Reading and writing files
The last, but perhaps the most critical, element of Python programming to introduce is that of how to
read information in from files and how to write it back out again. This is really where scripting
languages shine compared to other programming languages. The fact that bioinformatics programmers
spend a great deal of their time reading and writing files probably explains the preference for languages
like Python.

In general, files are read line by line using a for loop.

count = 0 # Declare a variable to count lines

file = open("mygenomefile", "r") # Open a file for reading (r)

for raw_line in file: # Loop through each line in the file

 line = raw_line.rstrip("\r\n") # Remove newline

 words = line.split(" ") # split the line into a list of words

 # Print the appropriate word:

 print ("The first word of line {0} of the file is {1}".format(count, words[0]))

 count += 1 # shorthand for count = count + 1

file.close() # Last, close the file.

print ("Read in {0} lines\n".format(count))

We start by declaring a variable named count, which we’ll use to count the number of lines in the file.
The open statement then signals Python to find the file named “mygenomefile” for reading (indicated
by "r") and assign it to the variable file. The for loop then kicks in. Each line of the file is read in,

one at a time, and temporarily assigned to the variable raw_line.

In text files created in Mac and Unix/Linux computers, each line ends with a newline character (\n). In

Windows, each line ends with a carriage return as well as a newline (\r\n). We often need to strip
those characters off, which we can do using rstrip("\r\n") (which works whether or not there is an
\r). We assign the result to our own variable, line. Next we use a fun method called split to divide

up the line wherever there is a space (or whatever we put between the quotes in the split command) and
assign each piece to sequential elements of a list named words. We then print the first word on each
line by writing out the corresponding list element (remember, lists are always indexed starting at zero,
so element number 0 is the first element). Note that variables can be indicated in the print statement by
placeholders (e.g., {0}), and then called out specifically at the end of the line after the format command.
Lastly, we increment our line counter count by one. The cycle continues until each line has been read,
and after finishing, we close the file. Had we wanted to, we could have remembered every line, or
perhaps only a few words from each line, by feeding in the lines (or words) into array elements as we
read the lines in.

Not too hard! On to writing files. Actually, it’s about the same as for reading files, but with a few
small changes. In the file command, instead of using "r" for ‘read,’ use "w" for ‘write.’

Then, every time you wish to write something to the output file, use the command
file.write(some_variable) instead of print:

file = open("test_file", "w")
file.write("Hello!\n")
file.write("Goodbye!\n")
file.close() # close the file as you did before

6

Note the presence of the newline character (\n) in the second and third lines. Without these, your output
will look like Hello!Goodbye! Unless you specify otherwise, you can find the new text file you

created (test_file) in the default Python directory.

So, our earlier file that prints the genetic code might be modified to write the code to a file:

file = open("myoutputfile", "w") # open myoutputfile for writing
for triplet in codons.keys(): # loop through codons dictionary keys
 file.write("The amino acid encoded by {0} is {1}\n".format(triplet, codons[triplet]))
file.close()

You can actually open and write to multiple files at once. Just assign them to variables other than file.

Putting it all together
These are the most important basic ideas for writing functional programs in Python. If you can master
these concepts, the rest will come with practice, necessity, and exposure to more advanced programs.
So, to close, let’s write a complete program to read in some real data, perform a calculation, and print
the results. This will be a simple program to calculate the nucleotide frequencies in a DNA sequence.

seq_filename = "Ecoli_genome.txt"
total_length = 0
nucleotide = {} # create an empty dictionary

seq_file = open(seq_filename, "r")
for raw_line in seq_file:
 line = raw_line.rstrip("\r\n")
 length = len(line) # Python function to calculate the length of a string
 for nuc in line:
 if nuc not in nucleotide:

 nucleotide[nuc] = 1

 else:

 nucleotide[nuc] += 1

 total_length += length

seq_file.close()

for n in nucleotide.keys():
 fraction = 100.0 * nucleotide[n] / total_length
 print ("The nucleotide {0} occurs {1} times, or {2} %".format(n, nucleotide[n], fraction))

Let’s choose the input DNA sequence in the file conveniently named Ecoli_genome.txt to be the genome of

E. coli, which we can download from the Entrez genomes web site
http://www.ncbi.nlm.nih.gov/nuccore/49175990?report=fasta (also on our class web site)
The format of the file will be line after line of A’s, C’s, G’s and T’s, such as:
agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtc... and so on.

Running the program produces the output:
The nucleotide A occurs 1142136 times, or 24.619133255346103 %

The nucleotide G occurs 1176775 times, or 25.365788782211496 %

The nucleotide C occurs 1179433 times, or 25.42308288395832 %

The nucleotide T occurs 1140877 times, or 24.591995078484082 %

So, now we know that the four nucleotides are present in roughly equal numbers in the E. coli genome.

