
BCH394P/BCH364C Systems Biology & Bioinformatics (course # 55680/55580)

Spring 2021 Tues/Thurs 11 – 12:30 PM Virtual

1

Instructor: Prof. Edward Marcotte marcotte@utexas.edu

Zoom office hours: Fri 11 – 12

TA: Vy Dang vyqtdang@utexas.edu

Zoom office hours: Mon 3-4/Wed 1-2

Class Slack channel: bch394pbch364c2021.slack.com

The class zoom channel will be posted on Canvas. It will be the same zoom for class and office hours.

Probably the most important slide today!

Course web page:

http://www.marcottelab.org/index.php/BCH394P_BCH364C_2021

This is a graduate student class!

It is open to a small # of upper division undergrads in natural sciences and engineering.

UG prerequisites: Biochemistry 339F with a grade of at least B; Computer Science 303E and Statistics and Data Sciences 328M (or Statistics and Scientific Computation 318M, 328M) with a grade of at least C-; and *consent of the instructor*.

3

An introduction to systems biology and bioinformatics,

emphasizing quantitative analysis of high-throughput biological data, and covering typical data, data analysis, and computer algorithms.

Topics will include introductory probability and statistics, basics of Python programming, protein and nucleic acid sequence analysis, genome sequencing and assembly, proteomics, synthetic biology, analysis of large-scale gene expression data, data clustering, biological pattern recognition, and gene and protein networks.

** NOT a course on practical sequence analysis or using web-based tools (although we'll use those too), but rather on algorithms, exploratory data analyses and their applications in high-throughput biology. **

Books

Most of the lectures will be from research articles and slides. For sequence analysis, there will be an **Optional text:**

Biological sequence analysis, Durbin, Eddy, Krogh, Mitchison, Cambridge Univ. Press (available from Amazon, used & ebook)

For biologists rusty on their stats, *The Cartoon Guide to Statistics* (Gonick/Smith) is very good (really!).

We will also be learning some Python programming. I <u>highly</u> recommend...

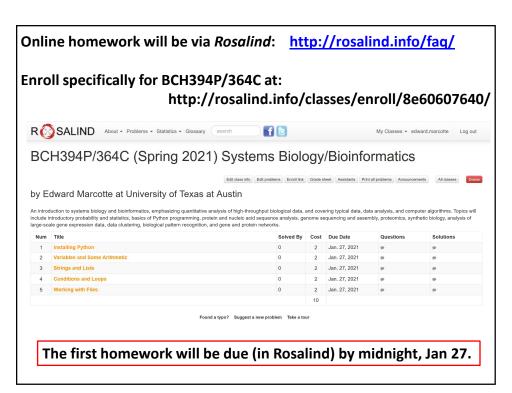
Python programming for biologists: https://pythonforbiologists.com/introduction/

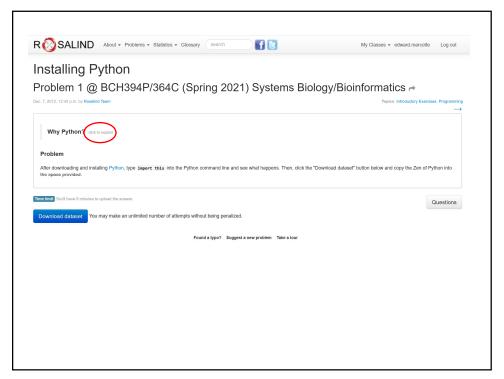
5

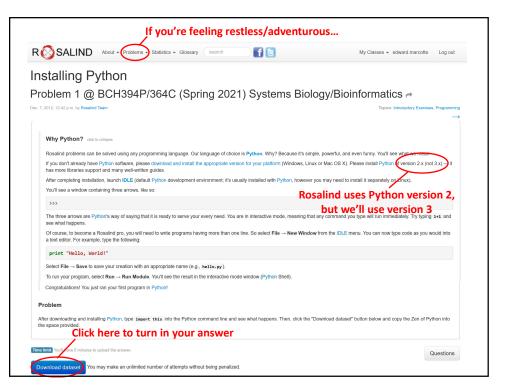
Grading

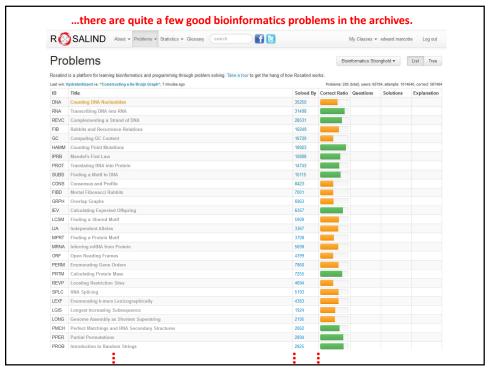
No exams. Instead, grades will be based on:

- Online programming homework
 (10 points each and counting 30% of the final grade)
- 3 problem sets
 (15 points each and counting 45% of the final grade)
- A course project that you will develop over the semester & present in the last 2.5 days of class (25% of final grade)


The course project will consist of a research project on a bioinformatics topic chosen by the student (with approval by the instructor) containing an element of independent computational biology research (e.g. calculation, programming, database analysis, etc.) turned in as a web URL (20%) and presented in class (5%).


The project will be emailed as a web URL to the TA & I, developed through the semester and finished by midnight, April 26, 2021. The last few classes will be spent presenting your projects.


Late policy


- All projects and homework will be turned in electronically and time-stamped.
- No makeup work will be given.
- Instead, all students have 5 days of free "late time".
 This is for the entire semester, NOT per project, and counting weekends/holidays just like any other day.
 - For projects turned in late, days will be deducted from the 5 day total (or what remains of it) by the # of days late.
 - Deductions are in 1 day increments, <u>rounding up</u> *e.g.* 10 minutes late = 1 day deducted.
 - Once the 5 days are used up, assignments will be penalized 10% / day late (rounding up), e.g., a 50 point assignment turned in 1 ½ days late would be penalized 20%, or 10 points.

7

Expectations on working together

Students are welcome to discuss ideas and problems with each other, but <u>all programs, Rosalind homework, problem</u>
sets, and written solutions
should be performed independently,

→ except the final presentation.

tl;dr: study/discuss together do your own programming/writing/project collaborate on the final presentation

What is Academic Dishonesty?

In promoting a high standard of academic integrity, the University broadly defines academic dishonesty—basically, all conduct that violates this standard, including *any act designed to give an unfair or undeserved academic advantage*, such as:

- Cheating
- Plagiarism
- Unauthorized Collaboration / Collusion
- · Falsifying Academic Records
- Misrepresenting Facts (e.g., providing false information to postpone an exam, obtain an extended deadline for an assignment, or even gain an unearned financial benefit)
- Any other acts (or attempted acts) that violate the basic standard
 of academic integrity (e.g., multiple submissions—submitting
 essentially the same written assignment for two courses without
 authorization to do so)

https://deanofstudents.utexas.edu/conduct/academicintegrity.php

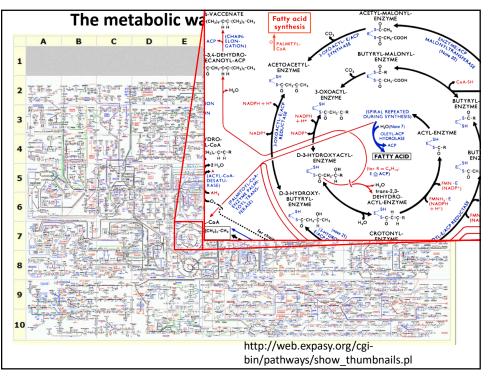
- By submitting as your own work any unattributed material that you obtained from other sources, you have committed plagiarism.
- Copying homework solutions from other students or internet sources (e.g. CourseHero) is cheating, collusion, and/or plagiarism.
- Software and computer code are legally considered in the same framework as other written works. Copying code directly without attribution is plagiarism.

Any materials found online (e.g. CourseHero)
that are associated with you, or any
suspected unauthorized sharing of materials,
will be reported to Student Conduct and
Academic Integrity in the Office of the Dean
of Students. These reports can result in
sanctions, including failure in the course.

See the university's official policy on plagiarism here: https://catalog.utexas.edu/general-information/appendices/appendix-c/student-discipline-and-conduct/

- You can use the internet to get ideas, programming suggestions and syntax, but downloading completed answers to assigned questions and submitting these as your own work is cheating/plagiarism.
- Copying entire programs verbatim from marked repositories offering Rosalind homework solutions is cheating and plagiarism.

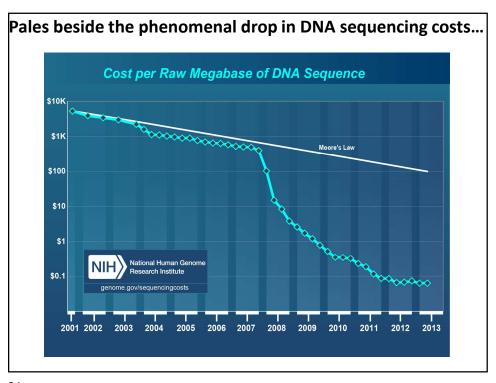
Consequences of Academic Dishonesty Can Be Severe!

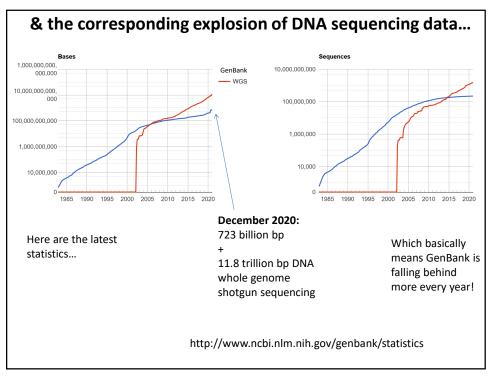

You may see or hear of other students engaging in some form of academic dishonesty. If so, do not assume that this misconduct is tolerated. Such violations are, in fact, regarded very seriously, often resulting in severe consequences.

Grade-related penalties are routinely assessed ("F" in the course is not uncommon), but students can also be suspended or even permanently expelled from the University for scholastic dishonesty.

http://deanofstudents.utexas.edu/sjs/acadint_conseq.php

17


Why are we here? (practically, not existentially)


Our current-ish knowledge of human metabolism...

Total number of reactions	7,440
Total number of metabolites	5,063
Number of unique metabolites	2,626
Number of metabolites in extracellular space	642
Number of metabolites in cytoplasm	1,878
Number of metabolites in mitochondrion	754
Number of metabolites in nucleus	165
Number of metabolites in endoplasmic reticulum	570
Number of metabolites in peroxisome	435
Number of metabolites in lysosome	302
Number of metabolites in Golgi apparatus	317
Number of transcripts	2,194
Number of unique genes	1,789

Nat Biotechnol. 2013 May;31(5):419-25 Updated in Metabolomics 2016 12:109

We have no choice!

Biologists are now faced with a staggering deluge of data, growing at exponential rates.

Bioinformatics offers tools and approaches to understand these data and work productively, and to build algorithmic models that help us better understand biological systems.

We'll learn some of the important basic concepts in this field, along with getting exposed to key technologies driving the field forward.

Specifically...

We'll cover the following topics, approximately in this order:

BASICS OF PROGRAMMING

Introduction to Rosalind A Python programming primer for non-programmers Rosalind help & programming Q/A

BIOLOGICAL SEQUENCE ANALYSIS

Substitution matrices (BLOSSUM, PAM) & sequence alignment Protein and nucleic acid sequence alignments, dynamic programming Sequence profiles BLAST! (the algorithm) Biological databases Markov processes and Hidden Markov Models

25

GENOMES, PROTEOMES, & "BIG BIOLOGY"

Gene finding algorithms

Genome assembly & how the human genome was sequenced

An introduction to large gene expression data sets

Promoter and motif finding, Gibbs sampling

Clustering algorithms, hierarchical, k-means, self-organizing maps, force-directed maps

Classification algorithms

Principal component analysis and data transformations

NETWORK & SYNTHETIC BIOLOGY

Biological networks: metabolic, signaling, graphs, regulatory Deep homology and the evolution of traits Designing, simulating, and building gene circuits Genome design and synthesis

Plus, expert guest lectures on:

NGS best practices Overview of mass spectrometry shotgun proteomics Protein 3D structural modeling

Plus, plus:

we'll attempt a "live" (on zoom) demo in-class of nanopore sequencing....

THE FINAL COURSE PROJECT IS DUE by midnight, April 26, 2021

The last 3 class days will be devoted to presenting your projects to the rest of the class.