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ABSTRACT

Motivation: MicroRNAs (miRNAs) are small non-coding RNAs that
regulate transcriptional processes via binding to the target gene
mRNA. In animals, this binding is imperfect, which makes the
computational prediction of animal miRNA targets a challenging task.
The accuracy of miRNA target prediction can be improved with
the use of machine learning methods. Previous work has described
methods using supervised learning, but they suffer from the lack of
adequate training examples, a common problem in miRNA target
identification, which often leads to deficient generalization ability.
Results: In this work, we introduce mirSOM, a miRNA target
prediction tool based on clustering of short 3′-untranslated region
(3′-UTR) substrings with self-organizing map (SOM). As our method
uses unsupervised learning and a large set of verified Caenorhabditis
elegans 3′-UTRs, we did not need to resort to training using a known
set of targets. Our method outperforms seven other methods in
predicting the experimentally verified C.elegans true and false miRNA
targets.
Availability: mirSOM miRNA target predictions are available at
http://kokki.uku.fi/bioinformatics/mirsom.
Contact: liisa.heikkinen@uef.fi
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
MicroRNAs (miRNAs) are an abundant class of small, non-
coding RNAs found in diverse organisms (Bartel, 2009; Lee
et al., 1993). miRNAs direct the post-transcriptional repression
and degradation of mRNAs by binding to their sequence with
partially complementary sites and thus impact a variety of
biological functions, including cell differentiation, organism growth,
development and tumor suppression (Kloosterman and Plasterk,
2006). While the amount of published miRNAs is increasing and a
large number of genes is predicted to be regulated by miRNAs, only
a small fraction of miRNA–target genes are experimentally verified.
For example, there are now 175 Caenorhabditis elegans miRNAs
annotated in miRBase database (Griffiths-Jones et al., 2008), but
only 15 entries for six of these miRNAs in the latest release of
TarBase (Papadopoulos et al., 2009). As experimental identification
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of miRNA targets is difficult, the computational prediction of the
target genes is a valuable tool to investigate miRNA functions and
in guiding related wetlab experiments.

Occurrence of perfect seed matches (seed = the nucleotides 1–8
of the miRNA 5′-end) from the 3′-untranslated region (3′-UTR)
of the mRNA, evolutionary conservation of the miRNA–target
relationship and the free energy �G of the miRNA:mRNA duplex
are the most often used determinants in miRNA target recognition
(Brennecke et al., 2005; Enright et al., 2003; Krek et al., 2005;
Lewis et al., 2003). However, in animals, miRNA binding to the
mRNA is imperfect, and a perfect seed matching site is neither
necessary nor sufficient for downregulation (Didiano and Hobert,
2006; Vella et al., 2004). Thus, the importance of miRNA 3′ base
pairing to compensate for weak seed pairing has become another
factor in identifying potential miRNA targets (Brennecke et al.,
2005). Also the sequence context of the miRNA target site and the
amount of sites in a 3′-UTR are suggested to have effect on the
miRNA binding efficacy (Didiano and Hobert, 2008; Grimson et al.,
2007; Sætrom et al., 2007; Vella et al., 2004). In all, the predictions
given by different tools are diverse, and the amount of overlapping
miRNA:target gene predictions is small (Bartel, 2009).

The use of machine learning methods can improve the accuracy
of miRNA target prediction (Kim et al., 2006; Wang and El Naqa,
2008; Yousef et al., 2007). However, the performance of these
methods is dependent on the quantity and quality of the dataset used
in the training. The number of experimentally validated miRNA
true and false targets is small, and while we have some knowledge
about miRNA binding to the target site, our knowledge regarding
false target sites is limited. This problem can be avoided by
using unsupervised learning. In this work, we show how the self-
organizing map (SOM) (Kohonen, 1995) can be used to identify
potential miRNA target sites from C.elegans 3′-UTR sequences.
The SOM is a neural network algorithm widely used to categorize
large, high-dimensional datasets by mapping the data into a smaller
dimension, typically into a 2D lattice of interconnected neurons.
Each neuron of the SOM contains a reference model, which
represents a local domain in the input space. In bioinformatics,
SOM is applied to problems like gene expression data analysis
(Törönen et al., 1999), study of codon usage (Kanaya et al., 2001),
clustering of protein sequences (Kohonen and Somervuo, 2002),
gene finding (Mahony et al., 2004) and identification of transcription
factor binding sites (Mahony et al., 2005). We trained the SOM
using short substrings of C.elegans 3′-UTR sequences so that the
putative target sites for each miRNA were clustered in one or in
two adjacent neurons in the lattice. As the clustering is based on the
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Fig. 1. Flow chart for the miRNA target prediction using mirSOM.

overall similarity of the training strings, the SOM captures not only
those verified miRNA target sites with perfect 7mer and 8mer seed
matches, but also those sites with more imperfect matches. The SOM
contains the whole repertoire of putative miRNA target sites ordered
according to similar seed complementarity, so it likely includes also
the target predictions for currently unknown miRNAs.

2 METHODS
Our goal was to find putative miRNA target sites by clustering all the
substrings extracted from the regions of experimentally verified C.elegans
3′-UTRs. To do this, we constrained the target sites of all miRNAs to have the
same length. As the length of miRNA target site is close to the length of the
binding miRNA and 95% of C.elegans miRNAs are 20–24 nt long, with an
average length of 22 nt, we chose 22 nt as the length of training sequences.
Although the length of the most miRNAs differ from 22 nt within a few
nucleotides, this has a minor effect on the result since the last nucleotides in
the 3′-end are not as important as the seed area in the miRNA—target site
interaction. A process flow chart describing the mirSOM method is given in
Figure 1.

Caenorhabditis elegans 3′-UTR sequence data used for SOM training:
we downloaded all the experimentally verified C.elegans 3′-UTR sequences
contained in WormBase release WS195 (Harris et al., 2010). If there
were several transcripts available for a gene, the transcript with longest
3′-UTR was selected, and those sequences that were <50 nt long were
discarded. The final sequence set used for training the SPM contained 8980
verified 3′-UTR sequences, 50–1912 nt in length. These sequences were then
segmented into every overlapping 22 nt substrings, resulting a training set
with 1 813 599 22 nt 3′-UTR substrings.

Numerical coding of the input sequences: in order to use SOM
algorithm to cluster short sequences, the nucleotides were coded as follows:
A= [1 0 0 0]T, C = [0 1 0 0]T, G = [0 0 1 0]T and T = [0 0 0 1]T, so each
22 nt sequence was represented by a 4×22 matrix, for example substring
S =AGTCAATTTTTTTTAATTTTCT was represented by matrix:

S =

⎡
⎢⎢⎣

1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1

⎤
⎥⎥⎦

miRNA sequences: the sequences of C.elegans and C.briggsae mature
miRNAs and miRNA*s were downloaded from miRBase release 15
(Griffiths-Jones et al., 2008). This dataset includes 176 miRNA and 57
miRNA* sequences for C.elegans, and 121 miRNA and 10 miRNA*
sequences for C.briggsae. This set contains 92 orthologous miRNAs with a
conserved hairpin precursor.

SOM architecture: the structure of the SOM is a 32×32 lattice of
interconnected neurons. Each neuron contains a 4×22 model matrix, which
is initialized with a random sequence, but is through an unsupervised learning
process modified to represent the position-specific characteristics of a larger
set of repeated features in the training data, for example target sites of a
miRNA. As Watson–Crick base-pairing of a target site to the miRNA seed
is crucial for targeting, the last 8 nucleotides (nucleotides 15–22) in the
neuron model matrix representing the seed were weighted so that the input
sequence distance from the model matrix in nucleotides 15 and 22 was
multiplied by a factor of two and in nucleotides 16–21 with a factor of
five, while the distances in the rest of the nucleotides were not weighted.
Training of the SOM was carried out sequentially, so that after finding the
most similar neuron weight matrix for a randomly picked training sequence,
this ‘winner’ weight matrix and the weight matrices of its neighbor neurons
were immediately updated towards the training sequence. Thus, during
the training, the weight matrix in each neuron was adjusted to represent
a position-specific frequency matrix of 3′-UTR substrings clustered to it.
The SOM was trained with 20 epochs with the whole training dataset. In
the ordering phase (epoch 1), the neighborhood of the best matching unit
contained the whole net, but was then decreased linearly so that during the
last fine-tuning phase (epoch 20), it contained only the closest neurons around
the winner node. The learning rate parameter was held constant in the first
(lr = 0.9) and last epoch (lr = 0.0001), but was decreased linearly in between.
The size of the SOM and the seed weighting schema used in the final network
were found to work best when all networks containing 16×16, 24×24 and
32×32 neurons with different emphasis in the seed area were trained and
their capability to separate the miRNA clusters was analyzed. The SOM
algorithm was implemented with Java 2 SE, the source code is available as
Supplementary Material.

miRNA clusters: for each miRNA, we searched all the 22ṅt sequences in
our training set that had perfect Watson–Crick base-pairing in their section
of the last 8 nts with a miRNA 7mer seed. Neurons that contained these
seed matching sequences for a miRNA were attached to the cluster of that
miRNA, and so each C.elegans miRNA cluster came to include 1–3 neurons.
For C.briggsae, the miRNA clusters were defined similarly.

Initial set of miRNA target sites: a larger sequence set containing all the
verified 3′-UTRs for C.elegans coding transcripts in WS213 was extracted
from WormBase. Again, only the transcript with the longest verified 3′-UTR
for each gene was kept for analysis, leading to the set of 12 866 verified
3′-UTRs. All of the 22 nt substrings of these 3′-UTRs were then introduced
to the trained SOM and the substrings hitting the miRNA cluster neurons
were collected, yielding the sets of initial target site predictions for each
miRNA.

Orthologous 3′-UTR sequences and the initial set of miRNA target
predictions for C.briggsae: the predicted C.briggsae WormBase orthologs
for all C.elegans protein coding genes were downloaded from WS215. This
set contained at least one predicted C.briggsae ortholog for 11 851 C.elegans
genes included in our miRNA target prediction gene set. The predicted 3′-
UTR sequences for these orthologs were constructed by extracting 1000 nt
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Fig. 2. The SOM trained with C.elegans 3′-UTR substrings. The yellow colored cells indicate the locations of C.elegans miRNA cluster neurons in the lattice.
The numbers display the amount of training sequences mapped to each neuron of the trained map, empty cells are neurons with no hits.

downstream from the end of the last exon of each C.briggsae gene included.
The initial C.briggsae miRNA target sites were obtained by collecting the
22 nt substrings whose most similar neuron in the SOM was a C.briggsae
miRNA cluster neuron.

Total free energy for miRNA binding: the total free energy was calculated
for each miRNA–target site pair in the initial prediction set of the two worms.
First, a larger sequence containing the 22 nt target site and 70 nt upstream and
downstream from it was extracted from the 3′-UTR. This length of 70 nt was
chosen based on the fact that secondary structure base-pairing interaction
between nucleotides that are separated by >70 nt is unlikely (Kertesz et al.,
2007). If the first nucleotide of the site was located closer than 70 nt from the
3′-UTR start, a part of the last exon was attached to get the 70 nt upstream.
If the last nucleotide of the site was closer than 70 nt from the 3′-UTR end,
the downstream part was truncated to this smaller size. To get the energy
needed to open the site area for miRNA binding, �Gopen, we calculated
the free energy of the thermodynamic ensemble using RNAfold (Hofacker,
2003), first for this 162 nt sequence as such, and then when the target site
in the middle of it was forced to be open. �Gopen is the difference of these
energies. Next, we calculated the free energy of the thermodynamic ensemble
for the miRNA–target site duplex with RNAcofold (Hofacker, 2003) and
obtained the total energy freed in miRNA binding to the site with equation
��G = �Gduplex +�Gopen.

3 RESULTS

3.1 SOM trained with C.elegans 3′-UTR substrings
The SOM trained with 22 nt substrings of C.elegans experimentally
verified 3′-UTRs is illustrated in Figure 2. Each short sequence in
the training data is assigned to one, most similar neuron in the
net. Sequences mapped to the same neuron are similar with each
other, and especially similar they are in the region of the last 8 nt

complementary to the miRNA 8mer seed area. In Figure 2, the
number of training sequences mapped to each neuron is shown, and
the yellow color indicates the locations of miRNA cluster neurons.
For C.elegans, there are 160 cluster neurons in total, containing an
average of 2148 training data strings each.

In Figure 3, the miRNA names are attached to their clusters.
miRNAs that share the same 8mer seed sequence are always
clustered to the same neuron and their names are coupled together in
a single miRNA name ending with an ‘F’ representing ‘family’. To
save space, we used this abbreviation also in some cases where two
miRNAs with the same cluster share a 7mer seed. For example let-
7F stands for let-7, miR-241, miR-48, miR-795 and miR-84 sharing
the 8mer seed UGAGGUAG and also for miR-793 (UGAGGUAU)
and miR-794 (UGAGGUAA) which share a 7mer seed with the first
five miRNAs. The abbreviations used in the Figure 3 are clarified in
Supplementary Table S1. The seven let-7F miRNAs and two other
miRNAs, miR-124 (UAAGGCAC) and miR-2211 (UCAGGUAG)
share the same, one and only cluster neuron of the SOM lattice.
Altogether, 211 of 233 miRNAs contain only one neuron in their
cluster and 117 neurons of these are clusters for only one miRNA.
Twenty-one miRNAs have two neurons in their clusters, while
the cluster for one miRNA star sequence, cel-lin-4* contains three
neurons. When there is more than one neuron in a miRNA cluster,
these neurons are adjacent in the map, except for mir-240 and
mir-63* for which these neurons are more distant but still quite near
to each other. Note that only the upper right quarter of the SOM
is shown in Figure 3. For the whole network, see Supplementary
Figure S1.

To visualize how the different miRNA 8mer seed complementary
sequences are distributed in the SOM lattice, we presented the
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Fig. 3. Caenorhabditis elegans miRNA cluster locations. The cluster of each miRNA is shown by the miRNA name. A name ending with ‘F’ indicates a
miRNA family, a couple of miRNAs with the same 8mer or 7mer seed with the same cluster neuron. Only the upper right quarter of the SOM is shown. The
entire network can be seen in Supplementary Figure S1.

consensus sequences of the substrings mapped to each neuron,
including only the last 8 nt (see Fig. 4 for the upper-right quarter
of the SOM and Supplementary Figure S2 for the entire SOM).
Consensus sequences that contain an abundance of nucleotide T
are located in the upper left corner of the net while sequences in
the opposite, right lower corner of the net are rich of A:s instead.
The clusters of about a third of all known C.elegans miRNAs are
located in the upper right quarter of the net. The consensus sequences
often contain an N in the first and in the last place, for example
the consensus sequence of the let-7F cluster is NTNCCTNN.
When there are fewer miRNAs attached to a neuron, the consensus
sequence often is more precise. For example, NTACAAAN for the
lsy-6 sole cluster neuron.

3.2 miRNA target prediction using mirSOM
All the 22 nt 3′-UTR substrings mapped to a miRNA cluster neuron
in the SOM were considered as the initial set of target sites for that
miRNA. The total free energy showing the accessibility of the site
for the miRNA binding was calculated for each site in the initial
prediction set. In order to optimize the predictions made by our
tool, its capability to correctly pick out the 20 experimentally verified

miRNA–target genes and discard the 13 well-characterized cel-lsy-6
false targets (for a list of genes see Supplementary Table S2) was
measured as the function of the total free energy cut-off used (Fig. 5).
The optimal threshold was −7.2 kcal/mol, when 17 of 20 verified
true targets were found and 12 of 13 false targets were rejected. Then,
for each miRNA in both nematode species, we left out those sites
in the initial prediction set whose total free energy value exceeded
this threshold. For the orthologous miRNAs, the conservation of
each miRNA–target gene relationship in C.elegans and C.briggsae
was studied: if also the ortholog gene 3′-UTR included a predicted
site for the miRNA located closer than 20 nt from the site in
the C.elegans 3′-UTR, the miRNA–target gene relationship was
classified as conserved. As phylogenetic conservation is a very
strong indicator for a miRNA–target relationship, we restored to
the set of final predictions target genes which included a perfect
7mer or 8mer seed match with too large total energy, but instead
a conserved predicted site in C.briggsae, thus resulting in the final
set of mirSOM target predictions. The sensitivity and specificity
of mirSOM are 0.90 and 0.92, when calculated using the sets of
experimentally verified miRNA true and false target genes. It is
noteworthy that while the initial prediction set for all miRNAs with
the same cluster neuron were the same, this is not the case in the
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Fig. 4. The distribution of 8mer seed complementary sequences in the SOM. Yellow color indicates the clusters of C.elegans miRNAs. Only the upper right
quarter of the SOM is shown. The entire network can be seen in Supplementary Figure S2.

Fig. 5. The sensitivity and specificity of the model as the function of the
total energy threshold used. The verified true (20 genes) and false (13 genes)
miRNA–target relationships were used to optimize the output of the SOM
model. The optimal energy threshold is −7.2 kcal/mol, when 17 of 20 true
targets were accepted and 12 of 13 false targets rejected.

final predictions. For example, if we consider miRNA let-7, 56% of
its final predicted targets are shared with the miRNAs with the same
seed and the same cluster neuron, and only 17% of its targets are
shared with all eight miRNAs with the same cluster neuron.

3.3 Comparison of mirSOM with other methods
We compared the miRSOM performance with seven other miRNA
target prediction tools available: NBmiRTar (Yousef et al. 2007);

PITA (Kertesz et al., 2007); rna22 (Miranda et al., 2006);
MicroCosm (Griffiths-Jones et al., 2008); TargetScanWorm (Ruby
et al., 2006); PicTar (Lall et al., 2006); and mirWIP (Hammell
et al., 2008). Of these, NBmiRTar uses supervised machine learning
by a naïve Bayes classifier applied to the output of miRanda
program (John et al. 2004). NBmiRTar is a model generated from
sequence and miRNA:mRNA duplex information from validated
targets and artificially generated negative examples. Rna22 uses
short patterns extracted from mature miRNA sequences to find
eligible places for miRNA targeting, and then pairs up these
islands with a miRNA. PITA first identifies the initial seeds for
each miRNA in the 3′-UTR, then calculates the site accessibility
and combines the sites for the same miRNA to get the total
interaction score. NBmiRTar, rna22 and PITA (version PITA All)
do not apply any cross-species sequence conservation filter to the
target predictions. MicroCosm (earlier known as miRBase Targets),
TargetScanWorm and PicTar are the three tools most commonly
used for miRNA target prediction in C.elegans. While MicroCosm
searches for maximal local complementarity alignments between a
miRNA and a 3′-UTR and uses the conservation filter afterwards,
TargetScanWorm and PicTar predict conserved miRNA targets using
genome-wide alignments of the 3′′UTRs of C.elegans, C.briggsae
and C.remanei. mirWIP is a recent tool based on contextual features
of miRNA binding sites enriched in a set of genes predicted by
immunoprecipitation to be targets of a set of conserved C.elegans
miRNAs (Zhang et al., 2007). mirWIP differs from the other six
computational tools compared in that it is based on unique biological
experiments.

First, we compared the overlap of the miRNAtarget sites predicted
with these tools. NBmiRTar was excluded from this part of the
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Fig. 6. The degree of overlap between the predictions of mirSOM compared with six other miRNA target prediction tools. The number of mirSOM predictions
included in each comparison depends on the scope. (A) All mirSOM predictions compared with rna22 and PITA, (B) mirSOM predictions for orthologous
miRNAs compared with mirWIP and MicroCosm and (C) mirSOM conserved predictions compared with TargetScanWorm and PicTar.

comparison, because there is no bulk download available for its
prediction data. As mirSOM has also the conserved site prediction
aspect, we made these comparisons separately for tools that do
not require conservation and for tools with a conservation filter.
The Venn diagram in Figure 6a shows the number of predicted sites
common to mirSOM, PITA and rna22. In comparison to the number
of predictions made in all, the size of target gene set predicted with all
the three tools is small. Approximately 28% of mirSOM predictions
are common with PITA, but PITA also contains the largest number
of predictions in all. The low number of common predictions with
rna22 may be due to the small number of predictions downloadable
for rna22 which contains sites from <3000 genes.

When we compared mirSOM with tools utilizing a conservation
filter, only the mirSOM predictions for the orthologous miRNAs
were taken into calculations. The number and intersections of
miRNA–target gene interactions predicted by mirSOM, mirWIP and
MicroCosm are shown in the Venn diagram in Figure 6b. About 30%
of mirSOM predictions are common with mirWIP and ∼50% of the
mirSOM predictions are found with either of the tools. The results
of a similar comparison made between mirSOM, TargetScanWorm
and PicTar are shown in Figure 6c. As TargetScanWorm and PicTar
search for conserved targets, only the 10 070 conserved miRNA–
target gene pairs contained in mirSOM predictions were taken along.
Forty percent of these mirSOM predictions are shared with either
PicTar or TargetScanWorm, and about one-third of the mirSOM
predictions are common to all of the three tools, thus underlining
the ability of them all to find the perfect seed matching, conserved
miRNA target sites. Altogether, ∼35% of the miRNA–target gene
interactions predicted by mirSOM are included in the prediction set
of at least one of the six other tools. Among the predictions made
only with mirSOM are the predicted targets for 57 star miRNAs and
23 miRNAs that are not included in any of the other tools. Also
the gene sets and 3′-UTR sequences incorporated in these tools are
unequal, which has an impact to the comparison results.

Secondly, we tested the ability of these tools to find the
experimentally verified C.elegans miRNA–target genes and to reject
the lsy-6 false target genes (Supplementary Table S2). For seven of
the 33 genes studied, there was no verified 3′-UTR available; so
for them we extracted the 1000 nt sequence downstream from the
last exon to act as the predicted 3′-UTR. mirSOM found 18 of 20
true target genes in the list (Table 1). The two verified targets not

Table 1. The experimentally verified C.elegans miRNA–target genes found
by mirSOM, NBmiRTar, PITA, rna22, MicroCosm, TargetScan, PicTar and
mirWIP

miRNA Gene mir NBmiR PITA rna22 Micro Target PicTar mirWIP
name Som Tar Cosm Scan

let-7 C35E7.4 X X X – – – – –
let-7 ceh-16* X X – – – – – X
let-7 daf-12 X X X X X X X X
let-7 die-1 X X X – X – – –
let-7 hbl-1 X X X X X X X X
let-7 let-60 – X – – – – – X
let-7 lin-41 – – – X – – X X
let-7 let-526 X X X – – – – –
let-7 nhr-23 X – – – – – – X
let-7 nhr-25 X X X – – – – X
let-7 nhr-4 X X X – – X X –
let-7 pha-4 X – – – – – – X
let-7 T14B1.1 X X X X X X X X
let-7 uba-1 X X X – – – – X
let-7 unc-129 X X X – X X X X
lin-4 lin-14* X X – – – X X X
lin-4 lin-28 X X X – X X X X
lsy-6 cog-1 X - X – X X X X
mir-273 die-1 X X X – – – – –
mir-61 vav-1 X X X – – X X X

18 16 14 4 7 9 10 15

‘X’= the gene is included; ‘-’= the gene is not included in the predictions. Asterisks (*)
next to gene name refers to targets which did not have a verified 3′-UTR in WS213,
and the 1000 nt downstream sequence was used instead to test the mirSOM method.

found are let-7 target genes let-60 and lin-41. Interestingly, let-60
and lin-41 have a couple of sites in neurons adjacent to let-7 cluster.
Of these, the let-60 sites in positions 479–500 and 128–149 in its 3′-
UTR have also acceptable total free energy values, −13.9 kcal/mol
and −9.1 kcal/mol, respectively. Thus, if we would include also the
adjacent neurons to let-7 cluster, mirSOM would correctly predict
all but one of the true targets. However, even with the 18 true targets
found, mirSOM outperforms all the other methods. Of the 13 well-
characterized lsy-6 false targets mirSOM rejects 12, together with
rna22. NBmiRTar is the only tool that rejects all the false targets,
when used with the default values of its parameters. The number of
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Table 2. Verified C.elegans lsy-6 non-target genes found by mirSOM,
NBmiRTar, PITA, rna22, MicroCosm, TargetScan, PicTar and mirWIP

miRNA Gene mir NBmiR PITA rna22 Micro Target PicTar mirWIP
name Som Tar Cosm Scan

lsy-6 C27H6.3 – – – – X X X –
lsy-6 ptp-1 – – X X – – – –
lsy-6 fkh-8 – – X – X X X X
lsy-6 nsy-1 – – X – – – – –
lsy-6 acl-5 – – X – – X X –
lsy-6 aex-4 – – X – – X X –
lsy-6 T20G5.9 – – – – – X X –
lsy-6 glb-1 – – – – X X X –
lsy-6 hlh-8* – – – – – X X –
lsy-6 F55G1.12* – – – – – X X –
lsy-6 T04C9.2* X – – – – X X X
lsy-6 T05C12.8* – – – – – X X –
lsy-6 T23E1.1* – – – – – – X –

1 0 5 1 3 10 11 2

‘X’= the gene is included; ‘-’= the gene is not included in the predictions. Asterisks (*)
next to gene name refers to targets which did not have a verified 3′-UTR in WS213,
and the 1000 nt downstream sequence was used instead to test the mirSOM method.

rejections made by the other five tools is between 3 and 11 (Table 2).
For mirWIP and PITA, the largest set of predictions available is used
in the comparison, which has an effect to the number of false target
predictions.

4 DISCUSSION
We have here introduced a new machine learning-based method,
mirSOM, for miRNA target finding. Our method is founded on
the basic knowledge about miRNA target sites: these sites have
imperfect complementarity with the miRNA sequence, where the
most crucial part is the miRNA seed, these sites are preferentially
located in the 3′-UTR of the transcript and they are accessible
to miRNA binding. This means that a chunk of short substrings
of the 3′-UTRs are miRNA target sites. We sought these sites by
clustering short 3′-UTR substrings with the SOM. The training
data consisted of all possible 22-nt long substrings extracted from
verified C.elegans 3′-UTRs, and the trained SOM contains, besides
the information about the target sites of miRNAs known today,
also a view of the mutual similarity of miRNA sequences. The
fact that 90% of the miRNA clusters reside in a single neuron of
the lattice implies that the SOM is well organized, and it is quite
probable that also the clusters for miRNAs yet to be found from
C.elegans are located in one or two nearby neurons of the map.
Once trained, the SOM can be applied, not only to find putative
targets for new C.elegans miRNAs, but also to find the targets for
the orthologous miRNAs in other worms thus enabling the study
of target conservation. As mirSOM uses only the filtering by site
accessibility to post-process the initial target sites obtained from the
SOM, it opens up a simplification to the miRNA target prediction,
but still works well in finding the verified miRNA target sites, while
keeping the number of predictions moderate.

A common problem in miRNA target finding is the small number
of experimentally verified miRNA–target genes, which has hindered
efforts to develop machine learning methods for target prediction
tasks. In particular, this makes it hard to build a supervised model

whose performance is highly dependent on the quantity and quality
of the positive and negative training datasets used. The unsupervised
learning algorithm used by mirSOM clusters the putative target sites
for each miRNA objectively, using no knowledge about the verified
true and false targets until the optimal total free energy threshold for
the site accessibility is defined. When compared with NbmiRTar, a
method using supervised machine learning, mirSOM finds 18 of the
20 experimentally verified targets while NBmiRTar predicts 16 of
20. These are the two best results in the comparison (Tables 1 and 2).
Since both of these tools are also very specific in their predictions,
it suggests that miRNA target prediction truly can be improved by
the use of machine learning methods.

The standard SOM algorithm has some limitations, like the
non-adaptable fixed architecture, which is relative to the expected
number and structure of the clusters. Instead of using an algorithm
that would adaptively determine the number of clusters (Mavroudi
et al., 2002; Hsu et al., 2003), we searched experimentally for
such size and weighting schema for the standard SOM that would
work best in this particular problem. As the solution does not
necessarily need a more sophisticated architecture, we decided to
keep the original SOM algorithm which is well known and easy to
understand.

mirSOM finds well those verified miRNA targets which include
a perfect 7mer or 8mer seed match, and also most of those target
genes with a shorter or otherwise imperfect miRNA seed match. It
also successfully rejects the sites from known false target genes with
a perfect seed match by using the total energy filter to the initial
prediction set. The energy threshold used, which relies on just a
few verified miRNA–target gene interactions presently available,
should be adjusted as more miRNA–target genes in C.elegans are
verified. Also, the SOM used in the initial target site finding step
is trained with verified 3′-UTR data, so it may be not suitable
for finding miRNA target sites from other sequence data, for
example from 5′-UTRs and the coding region. This is because the
sequence characteristics, like nucleotide composition and functional
elements, of these regions of mRNA differ from the 3′-UTRs, and
the clustering result using these sequences would likely be different.
We demonstrate here that mirSOM can identify targets in nematodes
and it should be possible to construct SOMs for other species. Future
studies will be aimed at verifying targets in more complex organisms
such as human and mice.
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