A Perl programming primer
CH391L Bioinformatics

1/25/2007
Perl:
the official acronym = Practical Extraction and Report Language

the unofficial acronym = Pathologically Eclectic Rubbish Lister

Read about “How Perl Saved the Genome Project” at

http://bio.perl.org/GetStarted/tpj_ls_bio.html

Online Perl help: http://www.perl.org/support/online_support.html

Good introductory Perl books:

Basic: Learning Perl, Randall L. Schwartz & Tom Christianson, O’Reilly Press

 Developing Bioinformatics Computer Skills, Gibas & Jambeck, O'Reilly Press

A bit more advanced: Programming Perl, Larry Wall, Tom Christianson &

 Randall L. Schwartz, O’Reilly Press

Although programming isn’t required to do quite a bit of bioinformatics research, in the end you always want to do something that someone else hasn’t anticipated. For this reason alone, if for no other, I’d recommend learning how to program in some computer language. Perl is neither the fastest, nor slowest, nor best, nor worst language, but is, for various reasons, well suited to bioinformatics, and thus is probably the most common programming language in the field (followed right after by C++, and maybe Java).

If you think only about handling biological data, it tends to be on the extensive side. For example, the human genome is about 3x109 nucleotides long, so even at only 1 byte per nucleotide (i.e., letter), this runs to about 3 GB worth of data. In our own database in the lab, we have about 150 fully sequenced genomes, encoding about 600,000 distinct genes. These are mostly bacterial genomes, which are smaller, but all of this takes up a bit under 2 GB worth of disk space. So, handling data in a convenient and fast manner is often a practical necessity. The typical bioinformatics group will store their data in a relational database (for example, using the mySQL database system, whose main attractions are that it is simple to use and completely free) and then do most of their analyses in C++ or Perl. We won’t spend time talking about mySQL or C++, but will spend the next 2 lectures giving an introduction to Perl. This way, you get (1) at least a flavor for the language, and (2) we can introduce the basics of algorithms.

Starting with some example programs in Perl:

Programs in Perl are written with any text editor. If you really wanted to, you could program one in Microsoft Word, save it as a text file, then run it on a computer that has the Perl compiler. In practice, most computers have text editors, such as emacs or vi. A Perl program has essentially no necessary components. So, a very simple program is:

#!/usr/bin/perl –w # The only mandatory line (& really, you can even leave this out!)

print "Hello, future bioinformatician!\n"; # print out the greeting

That’s it! Type this into your text editor and save it. Let’s call it “hello.pl”. (The names of Perl programs traditionally end in “.pl”.) If you are working on a UNIX/LINUX computer, you would then have to give the program permission to be run by typing:

chmod +x hello.pl

and then you could run the program by typing in its name preceded by a period and a slash:

./hello.pl

The output looks like this:

Hello, future bioinformatician!

So, going through the 2 lines in the program, we see first, a semi-mandatory line telling the computer you are programming in Perl (#!/usr/bin/perl –w) and where to look for the Perl compiler. Then, we have a comment after a pound sign. Other than for that first line, Perl ignores everything written after a pound sign, so this is how you can write notes to yourself about what’s going on in the program. The second line is the only real command we’ve given, and it simply instructs Perl to write (“print”) what you have between the quotes on the computer screen. The slash-n (“\n”) at the end of the word “bioinformatician” tells Perl to press the carriage return after printing your message, so that the next message printed would start on a fresh line. The last important thing to note is that each line after the first ends in a semicolon!
Let’s try a slightly more sophisticated version:

#!/usr/bin/perl –w # The only mandatory line (& really, you can even leave this out!)

Everything after a pound (#) sign is ignored by Perl !
print "What is your name? ";

print a question

$name = <STDIN>;

read in the answer, store in variable $name
chomp($name);

cut off new line

print "Hello, future bioinformatician $name!\n";
print out the greeting

This is a bit more complex. Type this in & save it as hello2.pl. Then give the program permission to run:

chmod +x hello2.pl

and run it:

./hello2.pl

The output looks like:

What is your name?

If you type in your name, followed by the return key, the program will print:

Hello, future bioinformatician Alice!
So, we’ve now seen one way to pass information to a Perl program. Going through the program line by line shows:

Line 1: Same as the last program

Line 2: Just another note to ourselves

Line 3: Another print statement. We’ve seen this before, but this time, we left out the “\n” command, so Perl will wait on the same line instead of going to a new line.

Line 4: We read in your name after you type it in & press the carriage return key. Your name is assigned to a variable called $name (all Perl variables start with a dollar sign).

Line 5: We use a rather specialized Perl command called chomp that removes the carriage return character from the end of $name. This is kind of odd. It means that Perl actually remembered that you pressed the return key and attached the “return” character to the end of your name. With the chomp command, we explicitly remove the return character.

Line 6: Lastly, we print out the message, but this time with your name included. Any variable can be printed in this fashion, by simply including it in a print statement.

Perl is very undemanding about how you type in the program. For example, we could run everything together and put all of the commands on one line:

#!/usr/bin/perl –w

print "What is your name?";$name = <STDIN>;chomp($name);print "Hello, future bioinformatician $name!\n";

and Perl would be perfectly happy. This is why we put semi-colons between commands.

Okay, so now we’ve seen 2 very simple Perl programs. Quite a few programs can be written that simply read in and print out information. Although we read in information from the keyboard (e.g. when you type your name in), it’s not much harder in Perl to read it in from a file, so that you can go quite a long ways with this general level of programming. However, we’d like to get to the point where we can do some calculations as well, so let’s look at the main elements of programs, so that we can eventually write a program that actually does something more interesting than just printing or reading a message.

Some general concepts:

Names, numbers, words, etc. are stored as variables. Variables in Perl can be named essentially anything, but always start with a dollar sign ($who, $what, $where, $id, $superegonumber9, $etc). A variable can be assigned essentially any value, within the constraints of the computer, (e.g., $BobsSocialSecurityNumber = 456249685; or $mole = 6.022e-23; or $password = “7 infinite fields of blue”;)

Groups of variables can be stored as arrays. An array is a numbered series of variables, like a vector, or a matrix. Arrays in Perl can be named essentially anything, but always start with the @ sign. The individual elements of the array can be referred to directly with the dollar sign followed by the name of the array and the number of the array element inside square brackets. So, for example, the array @nucleotides might contain the elements $nucleotides[0] = “A”, $nucleotides[1] = “C”, $nucleotides[2] = “G”, and $nucleotides[3] = “T”. By convention, arrays in Perl always start from zero, so our 4 element array @nucleotides has elements numbered 0 to 3.

Lastly, there’s a VERY useful variation on arrays called hashes. Hashes are groups of variables indexed not with numbers (although they could be) but with other variables. Hashes are named like arrays, but always preceded by a percent % sign. Individual hash elements are accessed like array elements, but rather than with square brackets, curly brackets are used. For example, we could store the genetic code in a hash named %codons, which might include 64 entries, one for each codon, such as $codons{“ATG”} = “Methionine” and $codons{“TAG”} = “Stop codon”.
These are the main data types. Now, for some control over what happens in programs. There are three very important ways to control what happens in a program: IF statements, FOR loops, and FOREACH loops.

IF Statements

Very often, one wishes to perform a logical test. This is usually done with an IF command. An IF command applies Boolean logic to a statement, then performs a different task depending on the logical result. So, we might be looking at a DNA sequence and then want to ask:

If this codon is a start codon, start translating a protein here.

Otherwise, read another codon.

The Perl equivalent of this might be:

if ($dnaTriplet eq “ATG”)

{

Start translating here. We’re not going to write this part since we’re

really just learning about IF statements

}

else

{

Read another codon

}

So, the logical test is inside the parenthesis following the IF statement. If the test is true, the commands in the first set of curly brackets are executed. If the test fails, the commands in the second set of curly brackets are run. The following logical arguments can be used:

eq
equals

(for letters or strings)

ne
is not equal to
(for letters or strings)

==
equals

(for numbers. Note that there are 2 equals signs in a row.)

!=
is not equal to
(for numbers)

<
is less than

>
is greater than

<=
is less than or equal to

>=
is greater than or equal to

and several others. Multiple tests can be combined by putting them in parenthesis and using Boolean operators, such as and, not or or, and nesting the test in an outer set of parentheses:

if (($dnaTriplet eq “TAA”) or ($dnaTriplet eq “TAG”) or ($dnaTriplet eq “TGA”))

{

print “Reached stop codon\n”;

}

FOR loops

Often, we’d like to perform the same command repeatedly or with slight variations. For example, to calculate the mean value of the number in an array, we might try:

Take each value in the array in turn.

Add each value to a running sum.

When you’ve added them all, divide the total by the number of array elements.

Perl provides an easy way to do this with a FOR loop. A FOR loop works by having a set of commands under the control of an internal counter. The counter gets modified (e.g. incremented or decremented) each time the commands are executed, and when a certain predefined criterion is met for the counter (e.g. it is less than or greater than a threshold), Perl exits the loop. So, the above instructions might be applied to find the mean value of the elements of the array @grades as follows:

for ($i=0; $i<$numberOfStudents; $i++)

this starts the FOR loop

{

commands inside the curly brackets

$sum = $sum + $grade[$i];

are executed on each cycle of the loop

}

$mean = $sum / $numberOfStudents;

now calculate the average grade

print “The average grade is $mean\n”;

print the results of the calculation

Here, instructions to Perl about how to run the FOR loop are in the parentheses after the for command, and the command to execute on each loop cycle is inside the curly brackets. The loop counter is a variable called $i, which is declared in the first section of the FOR loop. The counter $i starts at zero (also set in the first section of the FOR loop), because, as we’ve noted earlier, all arrays in Perl start with zero by convention. The counter is incremented by one each cycle of the loop (this is the mysterious command $i++ in the third section of the for loop instructions. An equivalent way of saying $i++ is $i=$i+1. So, you could run a loop with decrementing by replacing $i++ with $i--, which is the same as $i=$i-1). The loop will stop when the counter fails the logical test in the second section of the for loop instructions. So, when $i is no longer less than the variable $numberOfStudents, Perl will execute the loop. This means that Perl will perform the sum operation for each of the $numberOfStudents students in the class. Note that Perl will perform most mathematical operations, such as multiplication ($A * $B), division ($A / $B), exponentiation ($A ** $B), logarithms (log($A)—note, this calculates the natural (base e) log), sine (sin($A), where $A is in radians) and cosine(cos($A)), etc. These are all listed in Programming Perl.

FOREACH loops

The third main control mechanism in Perl is the FOREACH loop. It is basically similar to the FOR loop, but allows you to work with hashes, which are indexed not by a numerical counter, but by a variable of some sort. So, the foreach command lets you look at each value of a hash and perform some operation. For example, to look at each of the codons stored in the %codons hash we created earlier, we might say:

foreach $dnaTriplet (keys %codons)

{

print “The amino acid encoded by $dnaTriplet is $codons{$dnaTriplet}\n”;

}

which would have the effect of printing:

The amino acid encoded by CCA is Proline

The amino acid encoded by TAT is Tyrosine

The amino acid encoded by AGG is Arginine

and so on...

Some things to note: The word keys refers to the fact that we are looking at the index (or “keys”) of the hash. We will assign a hash index to the variable named $dnaTriplet, execute the print statement, then retrieve the next hash index, and so on, until all have been examined. The elements of a hash will be returned in a random order. It is possible to sort them by inserting the word sort before the word keys. There are some variations on the foreach command, such as being able to skip an index with the next command, and some more elaborate sorting commands.

These are the three most important ways of controlling a Perl program. Another very useful control mechanism is the subroutine, but you’ll have to learn these on your own!

Reading and writing files

The last, but perhaps the most critical, element of Perl programming to introduce is that of how to read information in from files and how to write it back out again. This is really where Perl shines compared to other programming languages. The fact that bioinformatics programmers spend a great deal of their time reading and writing files probably explains the preference for Perl.

In general, files are read line by line using a loop structure called a WHILE loop (which is very much like a FOREACH loop.) A WHILE loop has a single logical statement at the top of it. While the statement is true, the commands in the loop are executed; as soon as the statement is false, Perl exits the loop. For example:

$i = 0; while ($i < 3) {$i++; print “$i ”;}

would print “1 2 3 “, since the loop would be executed 3 times before the logical statement ($i < 3) becomes false because $i equals 3.

Now, to read in data from a file, we want to first indicate the filename, open the file, read in the data line by line, perform some operation on each line of the file, then close the file. So, we might say:

$count = 0;

Declaring a variable we’ll use as a line counter

open (GENOME,”mygenomefile”) or die “Hey now! I can’t open your file\n”; #Opening a file

while (<GENOME>)

Reading the file

{

$line = $_;

Read in one line

chomp($line);

@words = split(“ “,$line);

Find all of the words in the line

print “The third word of line $count of the file is $words[2]\n”;

$count++;

Increment the line counter

}

Go back to the top curly bracket to get the next line

close (GENOME);

and close your file when done

We start by declaring a variable named $count, which we’ll use to count the number of lines in the file. The open statement then signals Perl to find the file named “mygenomefile” and assign it the working name GENOME. If Perl can’t open the file, it reports an error message and stops running. Assuming the file is ok, the while loop then kicks in. Each line of the file is read in, one at a time, and temporarily assigned to a special variable in Perl called $_. We then reassign this variable to our own variable $line. Following that, we can play with line from the file. So, for example, we remove the carriage return with the command chomp, we then use a fun command named split to divide up the line wherever there is a space (or whatever we put between the quotes in the split command) and assign each piece to sequential elements of an array named @words. We then print the third word on each line by writing out the corresponding array element (remember, arrays are always indexed starting at zero, so element number 2 is the third element.) Lastly, we increment our line counter $count by one, and then repeat the whole process on the next line of the file. When the last line has been read, we close the file. Has we wanted to, we could have remembered every line, or perhaps only a few words from each line, by feeding in the lines (or words) into array elements as we read the lines in.

Not too hard! On to writing files... Actually, it’s about the same as reading files, but with a very minor change. On the open statement, a greater-than sign in quotes and a period are inserted before the filename, as so:

open (OUTPUT,”>” . ”myoutputfile”) or die “I can’t open your output file\n”; # Only for writing!!

Then, every time you wish to write something to the output file, the working name of the output file is inserted after a print command, e.g.

print OUTPUT “One more line in the output file! Whew!\n”;

When you’re finished, you can close the file just as you would a file you are reading from, with the command: close (OUTPUT);
So, for example, our earlier file that prints the genetic code might be modified to write the code to a file:

open (OUTPUT,”>” . ”myoutputfile”) or die “I can’t open your output file\n”; # Only for writing!!

foreach $dnaTriplet (keys %codons)

{

 print OUTPUT “The amino acid encoded by $dnaTriplet is $codons{$dnaTriplet}\n”;

}

close (OUTPUT);
Note: multiple output files can be opened at once if each has its own unique working name.

Putting it all together
This should be essentially everything required to write functional programs in Perl. If you can master these concepts, the rest will come with practice, necessity, and exposure to more advanced programs. So, to close, let’s write one more complete program, reading in some data, performing a calculation, and printing the results. This will be a simple program to read in a DNA sequence and calculate the frequency of the nucleotides, then write out the results.

#!/usr/bin/perl -w

$file = "DNA1";

$totallength = 0;

%nucleotide = ();

open (SEQUENCE, $file) or die "Can't open the DNA sequence file $file\n";

while (<SEQUENCE>)

 {

 $line = $_;

 chomp($line);

 $length = length($line);

 for ($i=0; $i < $length; $i++)

 {

 $nuc = substr($line, $i, 1);

 $nucleotide{$nuc}++;

 }

 $totallength += $length;

 }

close (SEQUENCE);

foreach $nuc (keys %nucleotide)

 {

 $fraction = 100 * $nucleotide{$nuc} / $totallength;

 print "The nucleotide $nuc occurs $nucleotide{$nuc} times, or $fraction %\n";

 }

Let’s choose the input DNA sequence in the file named DNA1 to be the genome of E. coli, which we can download from the Entrez genomes web site http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NC_000913 (also on our class web site)
The format of the file DNA1 will be line after line of A’s, C’s, G’s and T’s, such as:

agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtc... and so on.

Running the program produces the output:

The nucleotide g occurs 1176775 times, or 25.3657887822115 %

The nucleotide a occurs 1142136 times, or 24.6191332553461 %

The nucleotide c occurs 1179433 times, or 25.4230828839583 %

The nucleotide t occurs 1140877 times, or 24.5919950784841 %

So, we now know that the four nucleotides are present in roughly equal numbers in the E. coli genome.

PAGE
1

