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Abstract 

Background: One mechanism to account for robustness against gene knockouts or knockdowns is through 

buffering by gene duplicates, but the extent and general correlates of this process in organisms is still a matter of 

debate. To reveal general trends of this process, we provide a comprehensive comparison of gene essentiality, 

duplication and buffering by duplicates across seven bacteria (Mycoplasma genitalium, Bacillus subtilis, 

Helicobacter pylori, Haemophilus influenzae, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Escherichia 

coli), and four eukaryotes (Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila 

melanogaster (fly), Mus musculus (mouse)).  

Results: In nine of the eleven organisms, duplicates significantly increase chances of survival upon gene 

deletion (P-value≤0.05), but only by up to 13%. Given that duplicates make up to 80% of eukaryotic genomes, the 

small contribution is surprising and points to dominant roles of other buffering processes, such as alternative 

metabolic pathways. The buffering capacity of duplicates appears to be independent of the degree of gene 

essentiality and tends to be higher for genes with high expression levels. For example, buffering capacity increases 

to 23% amongst highly expressed genes in E. coli. Sequence similarity and the number of duplicates per gene are 

weak predictors of the duplicate’s buffering capacity. In a case study we show that buffering gene duplicates in 

yeast and worm are somewhat more similar in their functions than non-buffering duplicates and have increased 

transcriptional and translational activity.  

Conclusions: In sum, the extent of gene essentiality and buffering by duplicates is not conserved across 

organisms and does not correlate with the organisms’ apparent complexity. This heterogeneity goes beyond what 

would be expected from differences in experimental approaches alone. Buffering by duplicates contributes to 

robustness in several organisms, but to a small extent – and the relatively large amount of buffering by duplicates 

observed   in yeast and worm may be largely specific to these organisms. Thus, the only common factor of 

buffering by duplicates between different organisms may be the by-product of duplicate retention due to demands 

of high dosage.  
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Background 

Cells and organisms show a remarkable robustness against loss of one or more genes, which has triggered an 

ongoing discussion on the factors promoting such robustness [1, 2]. One of the simplest and most obvious 

mechanism for buffering is redundancy produced by gene duplicates [3, 4]. Indeed, gene duplication is a major 

factor shaping prokaryotic and eukaryotic genomes [5-7]. Duplicate genes diverge in their sequence and function 

[7] and may or may not have the ability to buffer for loss of the respective homolog. While processes other than 

buffering by duplicates play important roles in robustness against gene loss, e.g. use of alternative pathways [8, 9], 

the relationship between essentiality and the existence of gene duplicates has attracted much attention, and 

previous work revealed an intricate picture.  

For example, estimates of the role of duplicates as backups for gene loss vary widely within and across 

organisms. Most yeast genes are non-essential, i.e. dispensable, in rich medium or under standard laboratory 

conditions (>80%, ref. [10]). A study by Gu et al. attributes 23-59% of the dispensability (or survival) to buffering 

by gene duplicates [11], whereas other studies quote a much lower range (15-28%) [8, 12-15]. Only 2% of gene 

pairs with a synthetic sick or lethal (SSL) mutant phenotype in yeast show detectable similarity [16, 17], and 

amongst the ~20% of mouse genes examined to-date no buffering by duplicates has been observed [18, 19]. 

Several molecular causes may underlie buffering by duplicates, and their relative contributions are still debated. 

For example, buffering duplicates lack functional redundancy that would be expected from their backup role. 

Buffering duplicates in yeast have only partially overlapping expression [20] and genetic interaction profiles [13], 

suggesting their functions have diverged. Alternative explanations for the bias against duplicates amongst essential 

genes have been suggested. For example, it may be disadvantageous for the cell to retain duplicates for genes with 

severe (lethal) knockout phenotypes because this may disrupt their finely balanced expression dosage [21]. Further, 

the correlation between gene expression levels and existence of duplicates suggests buffering for gene loss may 

only be a by-product of processes that retain duplicates for dosage amplification [12, 13, 22, 23].  
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Despite the availability of several large-scale datasets on single gene knockouts (KO) or knock-downs (KD) as 

well as double gene-KOs for all of these organisms, previous studies mainly focused on single organisms like yeast 

[8, 11-14], worm [24] and mouse [18, 19]. Major hindrances of a cross-organism comparison are differences in 

experimental approaches and the specific definition of essentiality used. The types and numbers of essential genes 

per organism are influenced by several factors: the mutational strategy (insertion, knockout (deletion) or 

knockdown), growth of the organism in clonal or mixed populations, life cycle stage of the organism, and, for 

multi-cellular organisms, whether the whole organism or simply a cell line was targeted. Selection pressure is more 

stringent in mixed than in clonal populations, and we expect lower survival rates in the former. For example, a 

mutant bacterium of decreased fitness may be selected against in a mixed population, but still be able to form an 

isolated colony. Insertion experiments may result in leaky expression compared to knockout or deletion 

experiments, and thus identify fewer essential genes. Finally, while RNAi experiments in worm have reasonably 

low false-positive and false-negative rates [25, 26], we would still expect lower degrees of gene essentiality from 

this knockdown technique than from gene deletions.  

To gain further insights into general principles of buffering by gene duplicates, we conducted a comprehensive 

cross-organism comparison of essentiality and its relationship to gene duplication, analyzing eleven prokaryotic 

and eukaryotic organisms - M. genitalium, H. pylori, H. influenzae, M. tuberculosis, P. aeruginosa, B. subtilis, E. 

coli, S. cerevisiae (yeast), C. elegans (worm), D. melanogaster (fly), and M. musculus (mouse).  To do so, we 

addressed the above-mentioned challenges in several ways. When selecting essentiality datasets, we aimed to 

minimize variation in experimental approaches, and, whenever possible, sampled several organisms for a specific 

technique (Table 1). We tested different definitions of gene duplication, measures of expression levels, and (for 

yeast) robustness of the results against removal of genes of the whole-gene duplication [27, 28] and ribosomal 

genes (Additional file 1). When assessing the contribution of duplicates to survival upon gene-KO/KD, we 

normalized by the number of essential genes. Differences in technical approaches certainly influence the extent of 

essentiality detected amongst organisms; however, if duplicates have a buffering role against loss of gene function 

then this effect should be observable regardless of the exact number of genes identified to be essential. 

Our study reveals heterogeneity of essentiality and the contribution of duplicates to survival that goes beyond 

what is accountable for by technical differences. We show that organismal complexity and lifestyle, gene function, 
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function similarity, sequence similarity or the number of duplicates per gene are only weak predictors of the 

buffering capacity – gene expression levels and related measures are the strongest correlates. Simple relationships 

with respect to essentiality and gene duplication hold true for some organisms, but not for others. Buffering by 

duplicates plays a significant but small and heterogeneous role.  

Results and Discussion 

The extent of essentiality varies widely amongst organisms 

If duplicate genes play a significant role in buffering against mutations, then genes with one or more paralogs 

should have higher chances of survival upon deletion than singletons. This simple relationship has been 

demonstrated for yeast [11] and C. elegans [24], but not yet for other organisms. To test the generality of this 

prediction, we estimated families of homologous genes for eleven bacterial and eukaryotic organisms based on a 

BLAST [29] sequence similarity search (E-value<1.0e-10), and compared survival upon knockout (KO) or 

knockdown (KD) of genes from these gene families to survival upon KO/KD of singletons (Table 1). We estimate 

gene expression levels by use of the Codon Bias Index (Methods).  

We define the effective family size D of a target gene as the number of duplicates remaining after KO or KD. 

D=0 denotes singletons genes; D≥1 denotes genes with paralogs. The probability P(D≥1) is derived from the 

fraction of genes in a genome which do have one or more duplicates (paralogs). We also use the probability P(S) 

which describes for an organism chances of survival upon gene-deletion; P(S) is derived from the fraction of genes 

identified as dispensable (non-essential) in large-scale screens. When discussing ‘buffering by duplicates’ we mean 

the enrichment of duplicates amongst non-essential genes as inferred from statistical analysis. ‘Essentiality/non-

essentiality (survival)’ is purely based on outcomes of experiments.  

Table 1, Figure 1 and 2 summarize our results with respect to survival and gene duplication across whole 

genomes. Most genomes in our dataset have relatively few essential genes; chances for survival upon loss of a 

single gene are high in both prokaryotes and eukaryotes (P(S)>0.80), except for M. genitalium, H. influenzae and 

mouse (Figure 1A). Genes of high expression levels are more likely to be essential than genes of low expression 

levels (smaller P(S)); in half (six) of the organisms the difference is significant (P-value≤0.01).  
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In accordance with the expectation that more complex organisms tend to have more duplicate genes, the 

fraction of genes with duplicates (D≥1) increases from M. genitalium and the other bacteria, to yeast and the three 

animals (Figure 1B). Compared to other organisms, mouse has a noticeable depletion of singleton genes (D=0) 

relative to genes with duplicates. In five organisms, there is a significant increase in the fraction of duplicates 

(D≥1) amongst highly expressed genes compared to other genes (P-value≤0.01); an exception is B. subtilis in 

which the trend is inverted. When using Codon Adaptation Index or experimental expression data we obtain 

similar results (Additional file 1).  

Duplicates increase chances of survival – in some organisms more than in others  

To assess the contribution of duplicates to survival following gene-KO/KD we define the buffering capacity C 

as C = P(S|D≥1)/P(S|D=0) – 1, where P(S|D=0) is the probability of survival given the gene does not have 

additional duplicates, i.e. is a singleton. P(S|D≥1) is the probability of survival given the gene has one or more 

additional duplicates. C is calculated for each organism and quantifies the increase in probability of survival upon 

gene-KO/KD for genes which have a duplicate in the genome.  

In nine of the eleven organisms, duplicates contribute significantly and positively to survival (P-value≤0.05); 

with contributions ranging from 1 to 13%  (Table 1, Figure 2). The exceptions are M. genitalium and mouse in 

which duplicates appear to decrease chances of KO survival. The extent of buffering by duplicates, i.e. the value of 

C, does not correlate with the organisms’ complexity or genome size. Total C is largest in yeast, worm and H. 

pylori and smallest in H. influenzae, B. subtilis and fly. While the total number and fraction of genes with 

duplicates increases from simpler to more complex organisms (Figure 1B), the propensity of duplicates to buffer 

against gene loss varies independently.  

Next we ask whether amongst genes with duplicates chances for buffering upon gene loss increase with high 

expression levels compared to low expression levels. In most of the organisms, there are significant differences in 

buffering capacity C amongst genes of low and high expression levels (P-value≤0.05). However, only in five 

organisms (H. pylori, P. aeruginosa, E. coli, yeast, and worm), genes of high expression levels and with duplicates 

have significantly improved chances of survival; with C reaching 23% in E.coli. In M. genitalium and M. 

tuberculosis, C is positive amongst highly expressed genes when examining experimental expression data 
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(Additional file 1); in B. subtilis and fly survival is generally very high and a distinction between genes of high or 

low expression does not have any effect.  

These results are robust to various methods of paralog estimation, although exact numbers change depending on 

parameter settings. We tested, for example, different E-value cutoffs, different length requirements on the match 

region or when using methods of homology estimation that are completely independent of particular E-value 

thresholds (Additional file 1).   

Further correlates of buffering capacity 

Assuming that paralogs can take over the function of a deleted gene, one may hypothesize that chances of doing 

so increase i) with the number of paralogs present, and ii) their similarity to the mutant protein. We tested these 

predictions in the eleven organisms.   

Only in three organisms, P. aeruginosa, E. coli, and worm, chances of survival correlate significantly (P-

value≤0.05) with both the number of duplicates available per gene and with the distance of the gene to the nearest 

homolog (R
2≥0.64 and R

2≥0.80, respectively; Table 1).  These correlations have been observed previously in 

worm [24], but are not common amongst the organisms of our study. Yeast has a decent correlation with distance 

to the nearest homology (R
2
=0.72), but not with the number of duplicates per gene. These results do not change 

even when removing ribosomal genes or gene pairs originating from the whole-genome duplication [28], or when 

focusing on highly expressed genes (Additional file 1). Yeast is particularly enriched in two-gene families (D=1) 

which buffer for each other (Additional file 1).  Figure 3A shows these distributions for E. coli, yeast and worm. 

We further tested C for genes in different groups of gene function, without finding strong biases (Additional 

file 1).  

 

Two-gene families as model for buffering by duplicates 

To better understand buffering by duplicates, we compared the properties of a subset of duplicates which are 

likely to buffer for each other's function to those which do not buffer for each other. In particular, we analyzed 

two-gene families which had been tested for both single- and double gene-KOs. Of course, members of larger gene 
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families can also buffer for each other – however, it is more difficult to distinguish buffering genes from those with 

other functions. For two-gene families, if the double-KO of two non-essential genes is lethal, the two genes are 

likely to buffer for each other’s function in single-KOs, i.e. we call them buffering duplicates. Despite the 

generally low contribution of duplicates to survival upon gene knockout, these two-gene families are paramount 

candidates for buffering. If a double-KO is viable, reasons other than the presence of a duplicate should explain 

their viable single-KO phenotype. We call these pairs non-buffering duplicates.  

Amongst the ~300,000 yeast gene pairs tested for double-KO phenotypes tested in large- and small-scale 

screens [30], we identified 50 two-gene families with genetic interactions (buffering) and eight two-gene families 

with a viable double-KO phenotype (non-buffering). These two-gene families represent prime candidates for 

comparing characteristics of buffering and non-buffering duplicates, respectively. Table 2 and Additional file 1 

describe their properties tested across and between the genes. There are also another 551 two-gene families in yeast 

which have not been tested in double-KO experiments; Additional file 1 describes their characteristics.  

Both buffering and non-buffering two-gene families are defined by the same E-value threshold (10
-10

, 

Methods); however, buffering genes have significantly higher sequence identity between the members (P-

value<0.05; Table 2).  Buffering genes are also more conserved than non-buffering genes, i.e. have slower rates of 

evolution and more orthologs across organisms.  

We examined the functional similarity between genes in the sets of pairs, testing whether buffering duplicates 

are more similar in their function than non-buffering duplicates. We find that genes buffering two-gene families 

have mostly identical function descriptions, and descriptions for non-buffering genes are similar but not identical 

(Table 3, 4) – however, this finding is only qualitative. To quantify functional distance, we measured the average 

shortest path between the genes in a network of functional relationships [31]: buffering genes had slightly shorter 

paths between each other than non-buffering genes (not significant, Table 2), i.e. their functions are closer to each 

other. Other quantitative measures of gene function can be derived from the number and types of physical protein-

protein interactions, functional interactions [31], genetic interactions or gene-KO phenotypes under various 

conditions.  Buffering genes are more similar to each other than non-buffering genes in all these measures except 

for genetic interactions, although the trends are not significant (Table 2).  The lack of similarity of genetic 
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interaction profiles between buffering genes is consistent with recent findings by Ihmels et al. [13] although these 

authors included epistatic interactions other than lethal double-KO phenotypes in their analysis.  

Buffering and non-buffering genes show clear differences in terms of transcriptional and translational 

regulation (Table 2). Buffering genes have higher mRNA and protein expression levels. Measures of translation 

efficiency, e.g. protein length, molecular weight, Codon Adaptation Index (CAI), or protein production rate, are 

significantly elevated in buffering genes compared to non-buffering ones (P-value≤0.05); protein degradation is 

slightly decreased. Interestingly, some of these measures (e. g. length, CAI) are significantly more different 

between members of a buffering gene pair than between members of a non-buffering gene pair (Additional file 1).   

We also extracted orthologs of the buffering and non-buffering yeast two-gene families in fly, worm and mouse 

using InParanoid [32].  (None of the yeast genes had orthologs in E. coli). If a buffering gene pair in yeast has a 

single-gene ortholog in another organism (without additional duplicates), we expect this ortholog to be essential – 

more often than single-gene orthologs of non-buffering gene pairs.  If an ortholog of a buffering two-gene family 

has paralogs, we do not expect it to be essential.  Indeed, buffering gene pairs are enriched for essential single 

orthologs compared to non-buffering gene pairs, although the trend is very weak and not significant due to small 

numbers in the dataset (Table 5, P-value=0.19; Additional file 1, P-value=0.07).  There are several examples of 

essential single orthologs of buffering gene pairs: HMG1 and HMG2 are isozymes of HMG-CoA reductase in 

yeast (Table 3) and their double KO phenotype is lethal. The genes have one ortholog in worm (F08F8. 2) and one 

in mouse (HMG-CoAR, MGI96159) which both have embryonic lethal KO/KD phenotypes. SSF1 and SSF2 are 

yeast proteins required for ribosomal large subunit maturation (Table 3), and they have single essential orthologs 

in worm (K09H9. 6, lpd-6) and fly (CG5786, Peter Pan).  

For further validation, we extracted the 143 worm two-gene families tested in double-RNAi knockdowns [33] 

which consist of 16 pairs of synthetic sick or lethal (SSL) phenotypes, i.e. buffering duplicates, and 127 non-

buffering duplicate gene pairs. Unfortunately, there are no experimental data available for worm genes to test for 

measures of transcriptional and translational efficiency. When calculating CAI for the worm sequences, we found a 

significant bias confirming the trend in yeast (Table 2). Buffering genes are more efficiently translated than non-

buffering genes.  
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Noticeably, yeast is enriched for buffering gene pairs (50) vs. non-buffering gene pairs (eight) compared to 

worm (16 and 143-16=127, respectively).  This bias holds true even if only regarding the yeast gene pairs 

identified in large-scale screens: ten buffering and eight non-buffering pairs. Previous work has shown that yeast is 

enriched for buffering gene pairs which originate from the whole genome duplication [34]. In addition, RNAi-

based screens in worms may miss synthetically lethal interactions and thus have a high false-negative rate amongst 

gene pairs found to be non-buffering.  

Conclusions 

Our study provides a systematic and semi-quantitative assessment of essentiality and gene duplication across 

eleven prokaryotic and eukaryotic organisms revealing a heterogeneous picture. To the best of our knowledge, this 

is the first such organism-wide comparison.   

Chances of survival upon gene deletion are very high in most organisms (>80%), i.e. there are only few 

essential genes (Figure 1A). We observe some variation in survival that cannot be explained by experimental 

differences alone.  The bacteria in our dataset have been analyzed come from different experimental backgrounds 

(i.e. insertion vs. deletion, population vs. clonal study, Table 1). For example, screens of mixed populations with 

random gene insertions identify more essential genes than clonal studies, e.g. H. pylori, H. influenzae, and M. 

tuberculosis vs. P. aeruginosa, B. subtilis and E. coli (Table 1); however, there is no general trend.  

The extremely high chances of survival in fly (Figure 1A) can be (in part) attributed to the use of a cell line 

rather than the whole organism and of RNAi knockdowns instead of full gene deletion [35], and may be an 

underestimate due to current technical limitations. However, in worm, the same technique, RNAi-KDs, on the 

whole organism also produced high survival rates, but a much higher contribution of duplicates to survival (see 

below).  

The low chances of survival in mouse are likely due to the mouse dataset not originating from a large-scale 

screen, but from individual experiments that may have preferentially targeted and reported essential genes. For 

example, the gene targets in the mouse dataset are strongly enriched for orthologs of human disease genes (OMIM 

data, not shown); thus the dataset is biased. The lack of buffering by duplicate genes in mouse has been 
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demonstrated recently [18, 19]; however, with the availability of an unbiased large-scale essentiality screen in 

mouse these results may be refined. 

The degree of gene essentiality (or degree of survival) can be influenced by the experimental technique and the 

definition of essentiality that is used. In contrast, if duplicates contribute to survival upon gene loss, then this effect 

should be detectable irrespective of the number of essential and non-essential genes identified (provided that the 

selection is unbiased). In other words, we expect buffering by duplicates to be less dependent on technical 

differences than essentiality alone. We introduced statistical tests to assess the significance of buffering by 

duplicates (Figure 2).  A small P-value implies that duplicates are significantly enriched amongst non-essential 

genes compared to random and vice versa. Thus, for example, H. pylori has only few genes with duplicates 

(Figure 1B), but these duplicates exhibit a significant contribution to survival upon gene knockout (Figure 2). 

Likewise, B. subtilis and E. coli have similar degrees of gene essentiality (one examined by insertion, the other by 

knockout experiments), and similar fractions of duplicate genes, but very different contributions of these duplicates 

to survival.  

Duplicates significantly and positively contribute to survival in nine of the eleven organisms, but have 

noticeable effects only in six  (>5%; H. pylori, M. tuberculosis, P. aeruginosa, E. coli, yeast, worm; Figure 2). 

Given that duplicates make up to 80% of eukaryotic genomes (Figure 1B), the small contribution is surprising and 

points to dominant roles of other buffering processes, such as rerouting metabolic flux (see ref. [9] for an 

example).  

Buffering by duplicates is uncorrelated with organismal complexity. Buffering capacity varies widely amongst 

bacteria and eukaryotes, even when accounting for differences in experimental approaches (Table 1). M. 

genitalium, H. influenzae, B. subtilis, fly and mouse show low or even negative contributions of duplicates to 

buffering; H. pylori, yeast and worm show the highest. M. genitalium is a parasite with a small range of host- or 

tissue-specific living conditions [36] and a very small genome [37](Figure 1). Its low rate of survival upon gene-

KO could be explained by the low number of duplicate genes and the lack of condition-specific dispensability of 

genes which boost survival rates under normal conditions [12]. However, the same reasoning could apply to H. 

pylori and H. influenzae which have genome sizes similar to M. genitalium and restricted living conditions, but 
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have much higher survival rates and different buffering capacities of duplicates.  Mouse represents an exception in 

the analysis by having relatively low survival rates (Figure 1A), a higher ratio of duplicates vs. singletons than 

other organisms (Figure 1B), but a negative contribution of duplicates to survival (Figure 2). As explained above, 

conclusions in mouse may be refined later.  

Next we examined gene characteristics which have been suggested to influence buffering capacity. For 

example, we would expect duplicates of high sequence proximity (measured by E-value) to be more likely to 

buffer for loss of function than duplicates that diverged in their sequence. Similarly, we would expect genes with 

many duplicates (large gene families) to be more likely to be buffered for loss of function than genes of small 

families.  Both expectations are fulfilled in only some of the organisms (Table 1), e.g. in the two most thoroughly 

studied organisms yeast and worm, but not in others. 

Related to sequence similarity is function, which is more dissimilar amongst buffering duplicates than naively 

expected, when measured in terms of expression regulation [20] and genetic interactions [13]. When evaluating 

function similarity in terms of verbal descriptions, shortest path length in a network of functional relationships, and 

in terms of similarity of their KO-phenotype and physical interaction vectors, buffering genes were slightly (but 

not significantly) more similar to each other in function than non-buffering genes (Table 2). Thus, function 

similarity is also only a weak indicator of buffering capacity of duplicates.  

The single best correlate of buffering capacity by gene duplicates (identified in our study) is expression level. 

Genes of high expression levels tend to have more duplicates, but these duplicates are also more likely to buffer for 

loss of the gene’s function. (Note the subtle difference between the two observations.) The trend holds true for all 

organisms with positive buffering capacity (except for M. tuberculosis) and for different measures of expression 

levels (Additional file 1). For example, in highly expressed genes in E. coli, C increases to 23%. Likewise, 

buffering two-gene families in yeast have higher mRNA and protein abundance than non-buffering two-gene 

families, higher transcription and translation rates and smaller protein degradation rates (Table 2). 

In sum, buffering by gene duplicates only plays a significant and visible role in robustness against gene loss in 

some organisms but not in others. Factors influencing such buffering are, in decreasing order of approximate 

importance, gene expression levels, sequence distance between duplicates, the number of duplicates available per 
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gene, the gene’s function and the type of organism and its lifestyle. Such ranking holds true despite differences in 

experimental approaches. The lack of consistency across organisms, lack of strong correlates and low extent of 

buffering by duplicates suggests that buffering by duplicates is indeed merely a by-product of other processes. 

Genes with high expression levels are more likely to be essential [38] and have increased duplicate retention rates 

[12, 23]. These duplicates thus likely function to amplify gene dosage [22], which is supported by their tendency to 

be co-expressed [13]. Our analysis shows that only in relatively few cases these duplicates serve as backup for the 

loss of gene function.    

 

Methods 

Data sets 

We obtained the amino acid sequences for ten genomes (Mycoplasma genitalium; Bacillus subtilis; 

Helicobacter pylori; Haemophilus influenzae; Mycobacterium tuberculosis; Pseudomonas aeruginosa; 

Escherichia coli; Saccharomyces cerevisiae (yeast); Caenorhabditis elegans (worm); Drosophila melanogaster 

(fly); Mus musculus (mouse)) from a collection in the SUPERFAMILY database [39]. Information on gene 

essentiality (lethal phenotypes upon single gene-KO or KD) was taken from publications [25, 35, 36, 40-46]. 

Table 1 provides an overview of the number of genes in tested each organism (background set) and the number of 

genes identified to be essential. The table describes briefly the experimental strategy, as described in the 

publications and in the SEED database (http://theseed.uchicago.edu). All screens were conducted in rich medium 

and on whole organisms except for fly (cell line). For mouse, data of ~4,000 individual knockout experiments were 

obtained from the Mouse Genome Database [47]. 

To-date, large-scale double-KO/KD data is only available for yeast and worm.  For yeast we compiled in 

addition to the original data published by Tong et al. [16, 48] 13 datasets identified as ‘systematic screens’ in the 

BioGRID database [30, 49-60]. In a parsimonious approach, we only included data on lethal phenotypes of double-

KOs in our study and no other epistatic interactions. To calculate the background set of tested gene pairs, we 
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paired the 204 bait genes identified in the 14 analyses with all non-essential yeast genes [42], resulting in ~300,000 

tested pairs.  

For worm we extracted data from two large-scale double KD screens [26, 61], which comprise 52781 tested 

gene-pairs and 3927 genetic interactions. Another study in worm specifically targeted two-gene families with a 

single ortholog in yeast [33], and we used these pairs to investigate properties of two-gene families.  

Homology estimation 

We measured similarity between all sequences using a BLAST all-against-all search [29], and required an E-

value<10
-10

 for two genes to be predicted homologs. This E-value threshold was established in yeast and adjusted 

accordingly in organisms of very different genome size, e.g. in M. genitatlium (10
-9

) and worm (3.0*10
-10

). This 

threshold identified 609 two-gene families in yeast. We tested several other methods of homology prediction 

including different E-value thresholds, E-value-independent methods and use of InParanoid [32], all with results 

qualitatively identical to those discussed here (Additional file 1).  

Estimates of gene expression levels 

As a surrogate for gene expression levels, we calculated the Codon Bias Index (CBI) for each gene using the 

CodonW server [62], with standard settings and parameters for the respective organism. We also calculated the 

Codon Adaptation Index (CAI). However, since it requires a reference dataset of expressed genes (which was not 

always available) we consider CAI less appropriate of a measure than CBI. Both measures are expected to work 

less well in multi-cellular organisms due to tissue-specific expression which may not be captured by these 

sequence features. For further validation, we extracted from literature experimental expression data for all 

organisms except H. pylori. Results for CAI and experimental expression data are in Additional file 1. For the 

results in Figure 1 and 2, we rank-ordered the CBI values within each genome and selected subsets of genes with 

the highest or lowest CBI; the sizes of the subsets varied according to the organism’s genome size.  See Additional 

file 1 for details.  
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Two-gene families and their characteristics 

In yeast, 50 two-gene families were identified as buffering (SSL phenotype) and eight two-gene families as 

non-buffering (viable phenotype). The buffering pairs consist of nine pairs identified in the 14 large-scale double-

KO screens (see above), and 42 additional pairs identified in small-scale experiments and listed in BioGRID [30]). 

The non-buffering pairs originate from pairs tested in 14 large-scale screens and found to have viable phenotypes. 

Table 2 describes characteristics between the two members of a gene family and characteristics of individual 

genes, averaged across the whole set.  For vector comparisons, we constructed binary vectors (1 = observation, 0 = 

no observation) based on networks of functional interactions [31], genetic interactions (see description of datasets 

above), physical interactions (extracted from BioGRID [30]), and single gene-KO phenotypes [63]. The similarity 

between two vectors is measured as the percentage of shared positive interactions (Jaccard Index). More results are 

in Additional file 1.  

As a control for the effects of WGD genes, we also compared some characteristics in all 609 yeast two-gene 

families split into 108 and 501 two-gene families with and without evidence for their origin in the WGD [28], 

respectively  (Additional file 1). As another control, we extracted the 143 worm two-gene families, which were 

identified and tested by Tischler et al. [33] and calculated codon adaptation indices [64]( Additional file 1).  

Results from these controls are consistent with those from the yeast analysis.  

We used the FunSpec server [65] and SGD [66] for yeast protein function annotation. The SUPERFAMILY 

database [39] was used for annotation of ribosomal proteins in yeast. Genes originating from the whole-genome 

duplication were taken directly from the published paper [28]. Characteristics described in Table 2 are obtained 

from the sources quoted in the table and in Additional file 1.  For the ortholog analysis described in Table 5, we 

extracted information from InParanoid [32], and mapped that against the gene essentiality data described above.  

Information on yeast two-gene families is presented in Additional file 2.  

 

Abbreviations:  

CAI – Codon Adaptation Index; CBI – Codon Bias Index; D – effective gene family size (number of additional 

gene duplicates); E-value – expectation value; KD – knockdown; KO – knockout; MIPS - Munich Information 
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Center for Protein Sequences; P(S) – probability of survival upon single- or double gene-KO or KD; R
2
 – squared 

Pearson correlation coefficient; SGA– Synthetic Genetic Array; SSL – synthetic sick or lethal (mutant); SGD – 

Saccharomyces Genome Database; WGD – whole-genome duplication 

Organisms: M. genitalium - Mycoplasma genitalium; H. pylori – Helicobacter pylori; H. influenzae – 

Haemophilus influenzae; M. tuberculosis - Mycobacterium tuberculosis; Paer - Pseudomonas aeruginosa; B. 

subtilis – Bacillus subtilis; E. coli – Escherichia coli; S. cerevisiae – Saccharomyces cerevisiae (yeast); C. elegans 

– Caenorhabditis elegans (worm); D. melanogaster – Drosophila melanogaster (fly); M. musculus – Mus 

musculus (mouse) 
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Figure legends 

Figure 1. Chances of survival upon gene-KO/KD vary between organisms 

While the number and fraction of duplicate genes increases from prokaryotes to single- and multi-cellular 

eukaryotes, the fraction of essential genes (and hence chances of survival upon gene-KO/KD) vary widely. The 

three panels show the probability of survival P(S)(A), the gene family distribution and number of genes with 

duplicates (D≥1)(B). Singleton genes are labeled D=0, members of two-gene families are labeled D=1, members 

of larger gene families are labeled D≥2. Red bars indicate values for all genes, as also listed in Table 1. High 

(black) and low (white) gene expression levels are estimated by codon bias indices (see methods). Significant 

differences between genes of high and low expression (χ
2
 test) are marked with ** (P-value≤0.01) and *** (P-

value≤0.001).  

D – effective gene family size (number of additional duplicates of a gene); S – survival upon gene deletion (1-

essentiality).  Mgen – Mycoplasma genitalium; Hpyl – Helicobacter pylori; Hinf – Haemophilus influenzae; Mtub - 

Mycobacterium tuberculosis; Paer - Pseudomonas aeruginosa; Bsub – Bacillus subtilis; Ecol – Escherichia coli; 

Scer – Saccharomyces cerevisiae (yeast); Cele – Caenorhabditis elegans (worm); Dmel – Drosophila 

melanogaster (fly); Mmus – Mus musculus (mouse) 

Figure 2. Small but significant buffering of duplicate genes against gene-KO/KD 

In most organisms of our analysis, duplicates contribute significantly to survival against gene-KO/KD (P-

value≤0.05), although to only a small extent. Buffering is increased amongst genes of high expression levels (high 

CBI, black bars) compared to genes of lower expression levels (white bars). In highly expressed genes, duplicates 

contribute to survival by up to 23% (E. coli). Significant enrichment of duplicates amongst non-essential genes 
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(hypergeometric distribution) and significant differences between genes of high and low expression (χ
2
 test) are 

marked with *, **, and *** for P-value thresholds of 0.05, 0.01, and 0.001, respectively. 

For abbreviations see Figure 1.  

Figure 3. Survival upon single gene-KO/KD is correlated with the number of duplicates present 

and their distance to the gene only in some organisms 

For E. coli, yeast and worm, we deconvolute the set of duplicates into different effective family sizes (A), or 

according to the distance with respect to sequence between the deleted gene and its nearest homolog (B). In E. coli 

and worm, chances of survival increase slightly with an increasing number of duplicates present per gene (D) or 

increasing sequence similarity (as measured by the E-value).  Yeast has no correlation between the effective family 

size and survival (A), but chances for survival are higher in two-gene families (D=1) than in larger families (D≥2).  

For abbreviations see Figure 1.  

Tables 

Table 1. Essentiality and gene duplicates in ten bacterial and eukaryotic organisms.  

Organism Essentiality test No. of 
tested 
genes 

No. of 
essential 

genes 

Number of 
genes with 
duplicates 

(D≥1) 

Contribution 
of 

duplicates 
to buffering 

C 

R
2
 of P(S) 
vs. 

Effective 
family 
size D 

R
2
 of P(S) 

vs. E-
value 

M. genitalium Random insertion 

(clones) 

460 364 

89 -0.13 0.35 

0.16 

H. pylori Random insertion 

(population) 

1,559 329 

358 0.13*** 0.26 

0.14 

H. influenzae Random insertion 

(population) 

1,704 631 

400 0.01* 0.27 

0.20 

M. 

tuberculosis 

Random insertion 

(population) 

3,920 614 

1,683 0.06*** 0.63* 

  0.40 

P. aeruginosa Random insertion 

(clones) 

5,566 364 

2,689 0.07*** 0.64** 

0.80** 
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B. subtilis Targeted insertion 

(clones) 

4,105 191 

1,857 0.0045* 0.37 

0.01 

E. coli Targeted knockout 

(clones) 

3,221 291 

1,940 0.06*** 0.64** 

0.82** 

S. cerevisiae Targeted knockout 

(clones) 

5,318 952 

2,531 0.12*** 0.00 

0.72* 

C. elegans Targeted 

knockdown 

(clones) 

13,915 1,345 

9,203 0.09*** 0.74** 

0.92*** 

D. 

melanogaster 

Targeted 

knockdown in cell 

line (clones) 

12,145 318 

7,004 0.01*** 0.00 

0.60* 

M. musculus Collection of 

individual 

experiments 

4,267 1,438 

3,664 -0.07** 0.03 

0.00 

The table summarizes properties of the eleven organisms in our analysis, such as (from left to right) the names 

of the organims; the type of KO/KD experiment; the number of genes tested for their essentiality in gene-KO or 

KD experiments; the number of genes resulting in lethal phenotypes (essential genes); the number of genes with 

one or more duplicates (D≥1) amongst the tested genes; the contribution of duplicates to buffering C = 

P(S|D≥1)/P(S|D=0) - 1; the correlation between P(S) and effective family size of the genes D (D  ranges from 0 to 

8+, see text); and the correlation between P(S) and distance of a gene to its nearest neighbor (measured in –log(E-

value), bin size 5). In the experimental descriptions, ‘clones’ refers to clonal outgrowth on plates or in cultures; 

‘population’ refers to (mixed) population outgrowth in liquid culture. P-value thresholds of 0.05, 0.01, and 0.001 

are marked with *, **, and ***, respectively. 

KD – knockdown; KO – knockout; P(S) – probability of survival; D – effective gene family size (number of 

additional gene duplicates)  
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Table 2. Characteristics of buffering and non-buffering yeast two-gene families 

Feature Source 

Buffering 
gene pair 
- average 

Buffering 
gene pair  
- count 

Non-
buffering 
gene pair 
- average 

Non-
bufferin
g gene 
pair - 
count t-score 

Across genes       

mRNA abundance (molecules/cell) [67] 4.948 91 0.906 14 4.04* 

Protein abundance (molecules/cell) [67] 35040 29 2116 4 2.84 

Molecular weight (Da) [66] 66299.9 99 91885.0 16 -2.33 

Codon Adaptation Index [66] 0.232 99 0.134 16 4.97* 

Codon Bias Index [66] 0.187 99 0.051 16 5.18* 

Protein production rate (s
-1

) [68] 0.632 90 0.056 12 3.45* 

Proteins produced per mRNA [68] 5.733 85 1.388 11 4.07* 

Transcription rate (s
-1

) [68] 0.109 85 0.040 11 2.87 

Protein half-life (min) [69] 108.5 74 177.1 13 -0.50 

dN/dS [70] 0.056 56 0.113 8 -1.95 

No. orthologs in 14 organisms [32] 8.1 94 5.8 15 1.52 

No. protein-protein interactions [71] 15.2 84 4.3 14 4.50* 

Between genes       

Sequence similarity (%) 
BLAST 
output 54.3 50 32.5 8 4.91* 

Shortest path – Functional network [31] 1.27 48 1.63 8 -1.26 

Vector similarity – Functional 
interactions [31] 0.15 23 0.04 7 2.04 

Vector similarity – Physical 
interactions [30] 0.13 25 0.03 8 2.01 

Vector similarity – Genetic 
interactions  

See 
methods 0.01 26 0.07 7 -1.49 

Vector similarity – KO phenotypes [63] 0.17 10 0.11 2 0.27 

 

Worm two-gene families (subset) 

 

      

Length (nt) [66] 1556 254 1359 32 1.10 

Codon Adaptation Index  [64] 0.396 254 0.326 32 2.46 

dN (Ka)  
Analysis 
by [33] 0.34  0.50   

The table lists a selection of characteristics tested for the two sets of buffering and non-buffering yeast two-

gene families, respectively. Also see Table 3 for  description of the data. A small number of characteristics could 

also be tested for worm two-gene families, identified in published work [33]. Due to multiple hypothesis testing, a 

t-score>3.26 should be considered significant at an adjusted P-value of 0.05 (Bonferroni); significant scores are 

marked with *. An E-value of ‘0’ signifies an E-value that is smaller than 10
-360

. 
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Table 3. Examples of yeast buffering two-gene families (SSL double-KO phenotype) 

Name Function Name Function 
E-value Sequence 

identity (%) 

YIL159W 
BNR1 

Formin, nucleates the formation of 
linear actin filaments, involved in 
cell processes such as budding and 
mitotic spindle orientation which 
require the formation of polarized 
actin cables, functionally redundant 
with BNI1 

YNL271C 
BNI1 

Formin, nucleates the formation of 
linear actin filaments, involved in 
cell processes such as budding 
and mitotic spindle orientation 
which require the formation of 
polarized actin cables, functionally 
redundant with BNR1 

1E-82 32 

YML075C 
HMG1 

One of two isozymes of HMG-CoA 
reductase that catalyzes the 
conversion of HMG-CoA to 
mevalonate, which is a rate-limiting 
step in sterol biosynthesis; localizes 
to the nuclear envelope; 
overproduction induces the 
formation of karmellae 

YLR450W 
HMG2 

One of two isozymes of HMG-
CoA reductase that convert 
HMG-CoA to mevalonate, a rate-
limiting step in sterol 
biosynthesis; overproduction 
induces assembly of peripheral 
ER membrane arrays and short 
nuclear-associated membrane 
stacks 

0 62 

YKR067W 
GPT2 

Glycerol-3-phosphate 
acyltransferase located in both lipid 
particles and the ER; involved in the 
stepwise acylation of glycerol-3-
phosphate and dihydroxyacetone, 
which are intermediate steps in lipid 
biosynthesis 

YBL011W 
SCT1 

Glycerol 3-
phosphate/dihydroxyacetone 
phosphate dual substrate-
specific sn-1 acyltransferase of 
the glycerolipid biosynthesis 
pathway, prefers 16-carbon fatty 
acids, similar to Gpt2p, gene is 
constitutively transcribed 

2E-

118 36 

YEL042W 
GDA1 

Guanosine diphosphatase located 
in the Golgi, involved in the 
transport of GDP-mannose into the 
Golgi lumen by converting GDP to 
GMP after mannose is transferred 
its substrate 

YER005W 
YND1 

Apyrase with wide substrate 
specificity, involved in preventing 
the inhibition of glycosylation by 
hydrolyzing nucleoside tri- and 
diphosphates which are inhibitors 
of glycotransferases; partially 
redundant with Gda1p 

5E-28 27 

YKL020C 
SPT23 

ER membrane protein involved in 
regulation of OLE1 transcription, 
acts with homolog Mga2p; inactive 
ER form dimerizes and one subunit 
is then activated by 
ubiquitin/proteasome-dependent 
processing followed by nuclear 
targeting 

YIR033W 
MGA2 

ER membrane protein involved in 
regulation of OLE1 transcription, 
acts with homolog Spt23p; 
inactive ER form dimerizes and 
one subunit is then activated by 
ubiquitin/proteasome-dependent 
processing followed by nuclear 
targeting 

1E-

163 37 

YGR038W 
ORM1 

Evolutionarily conserved protein 
with similarity to Orm2p, required for 
resistance to agents that induce the 
unfolded protein response; human 
ortholog is located in the 
endoplasmic reticulum 

YLR350W 
ORM2 

Evolutionarily conserved protein 
with similarity to Orm1p, required 
for resistance to agents that 
induce the unfolded protein 
response; human ortholog is 
located in the endoplasmic 
reticulum 

3E-68 72 

YER087C-
B SBH1 

Beta subunit of the Sec61p ER 
translocation complex (Sec61p-
Sss1p-Sbh1p); involved in protein 
translocation into the endoplasmic 
reticulum; interacts with the exocyst 
complex 

YER019C-
A SBH2 

Ssh1p-Sss1p-Sbh2p complex 
component, involved in protein 
translocation into the 
endoplasmic reticulum 

8E-19 55 

YHL003C 
LAG1 

Ceramide synthase component, 
involved in synthesis of ceramide 
from C26(acyl)-coenzyme A and 
dihydrosphingosine or 
phytosphingosine, functionally 
equivalent to Lac1p 

YKL008C 
LAC1 

Ceramide synthase component, 
involved in synthesis of ceramide 
from C26(acyl)-coenzyme A and 
dihydrosphingosine or 
phytosphingosine, functionally 
equivalent to Lag1p 

6E-

169 73 
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YHR066W 

SSF1 

Constituent of 66S pre-ribosomal 
particles, required for ribosomal 
large subunit maturation; 
functionally redundant with Ssf2p 

YDR312W 

SSF2 

Protein required for ribosomal 
large subunit maturation, 
functionally redundant with Ssf1p 

 

0 94 

YPR159W 
KRE6 

Protein required for beta-1,6 glucan 
biosynthesis; putative beta-glucan 
synthase; appears functionally 
redundant with Skn1p 

YGR143W 
SKN1 

Protein involved in sphingolipid 
biosynthesis; type II membrane 
protein with similarity to Kre6p 

0 68 

Two-gene families and their phenotypes in double-KOs are a good model for buffering by gene duplicates.  We 

distinguish between ‘buffering genes’ (50), i. e. gene pairs resulting in a synthetic sick or lethal (SSL) phenotype 

upon double-KO; and ‘non-buffering genes’ (eight), i. e. gene pairs that result in a viable phenotype upon double 

gene-KO, and which are thus unlikely to buffer for each other in single gene-KO.  

Tables 3 and 4 list the functions of a subset of buffering and all eight non-buffering gene pairs, respectively, 

with one pair per row.  The ten buffering gene pairs in this table originate from the same large-scale screens as the 

eight non-buffering pairs in table 4. The remaining 40 buffering gene pairs originate from small-scale screens, and 

are listed in the Additional file 2. The descriptions of functions are taken from SGD [66]. Buffering genes (this 

table) are more often described as having identical functions than non-buffering genes (Table 4). 

 

Table 4. Examples of yeast non-buffering two-gene families (viable phenotype in double-KO) 

Name Function Name Function 
E-value Sequence 

identity (%) 

YJR075W 
HOC1 

Alpha-1,6-mannosyltransferase 
involved in cell wall mannan 
biosynthesis; subunit of a Golgi-
localized complex that also contains 
Anp1p, Mnn9p, Mnn11p, and 
Mnn10p; identified as a suppressor 
of a cell lysis sensitive pkc1-371 
allele 

YGL038C 
OCH1 

Mannosyltransferase of the 
cis-Golgi apparatus, initiates 
the polymannose outer chain 
elongation of N-linked 
oligosaccharides of 
glycoproteins 

 

2E-40 27 

YGR188C 
BUB1 

Protein kinase that forms a complex 
with Mad1p and Bub3p that is 
crucial in the checkpoint mechanism 
required to prevent cell cycle 
progression into anaphase in the 
presence of spindle damage, 
associates with centromere DNA via 
Skp1p 

YJL013C 
MAD3 

Component of the spindle-
assembly checkpoint complex, 
which delays the onset of 
anaphase in cells with defects 
in mitotic spindle assembly; 
interacts physically with the 
spindle checkpoint proteins 
Bub3p and Mad2p 

2E-50 35 

YHR119W 
SET1 

Histone methyltransferase, subunit 
of the COMPASS (Set1C) complex 
which methylates histone H3 on 
lysine 4; required in transcriptional 
silencing near telomeres and at the 
silent mating type loci; contains a 
SET domain 

YJL168C 
SET2 

Histone methyltransferase with 
a role in transcriptional 
elongation, methylates a lysine 
residue of histone H3; 
associates with the C-terminal 
domain of Rpo21p; histone 
methylation activity is 
regulated by phosphorylation 
status of Rpo21p 

2E-16 30 
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YDR528W 
HLR1 

Protein involved in regulation of cell 
wall composition and integrity and 
response to osmotic stress; 
overproduction suppresses a lysis 
sensitive PKC mutation; similar to 
Lre1p, which functions 
antagonistically to protein kinase A 

YCL051W 
LRE1 

Protein involved in control of 
cell wall structure and stress 
response; inhibits Cbk1p 
protein kinase activity; 
overproduction confers 
resistance to cell-wall 
degrading enzymes 

 

5E-34 34 

YJR131W 
MNS1 

Alpha-1,2-mannosidase involved in 
ER quality control; catalyzes the 
removal of one mannose residue 
from Man9GlcNAc to produce a 
single isomer of Man8GlcNAc in N-
linked oligosaccharide biosynthesis; 
integral to ER membrane 

YHR204W 
MNL1 

Alpha mannosidase-like 
protein of the endoplasmic 
reticulum required for 
degradation of glycoproteins 
but not for processing of N-
linked oligosaccharides 

9E-25 25 

YDR420W 
HKR1 

Serine/threonine rich cell surface 
protein that contains an EF hand 
motif; involved in the regulation of 
cell wall beta-1,3 glucan synthesis 
and bud site selection; 
overexpression confers resistance 
to Hansenula mrakii killer toxin, HM-
1 

YGR014W 
MSB2 

Mucin family member at the 
head of the Cdc42p- and MAP 
kinase-dependent filamentous 
growth signaling pathway; also 
functions as an osmosensor in 
parallel to the Sho1p-mediated 
pathway; potential Cdc28p 
substrate 

6E-12 29 

YML061C 
PIF1 

DNA helicase involved in telomere 
formation and elongation; acts as a 
catalytic inhibitor of telomerase; 
also plays a role in repair and 
recombination of mitochondrial DNA 

YHR031C 
RRM3 

DNA helicase involved in rDNA 
replication and Ty1 
transposition; relieves 
replication fork pauses at 
telomeric regions; structurally 
and functionally related to 
Pif1p 

5E-102 40 

YJL092W 
HPR5 

DNA helicase and DNA-dependent 
ATPase involved in DNA repair, 
required for proper timing of 
commitment to meiotic 
recombination and the transition 
from Meiosis I to Meiosis II; 
potential Cdc28p substrate 

YOL095C 
HMI1 

Mitochondrial inner membrane 
localized ATP-dependent DNA 
helicase, required for the 
maintenance of the 
mitochondrial genome; not 
required for mitochondrial 
transcription; has homology to 
E. coli helicase uvrD 

2E-18 21 

See Table 3 for description. Tables 3 and 4 list the functions of a subset of buffering and all eight non-buffering 

gene pairs, respectively, with one pair per row.  The descriptions of functions are taken from SGD [66]. Buffering 

genes (Table 3) are more often described as having identical functions than non-buffering genes (this table). 

 

 

 

Table 5. Orthologs of yeast buffering and non-buffering two-gene families 

 Buffering pairs Non-buffering 
pairs 

Single-gene ortholog in fly, worm or mouse (no 
duplicate) 

  

 - essential 11 0 
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 - non-essential 13 3 

Multi-gene orthologs in fly, worm or mouse (with 
duplicates) 

  

 - all duplicates essential 1 0 

 - all duplicates non-essential 6 0 

Other (mix of the above or no information)   

 24 6 

 

This table lists the number of instances in which for the buffering and non-buffering yeast two-gene families, 

respectively, single or multiple orthologs were found in fly, worm or mouse and their KO-phenotype if known. 

Also see Table 3 for description of the data. Orthologs are divided into single-gene orthologs (no additional 

homologs in the organism) and multi-gene orthologs (additional paralogs).  Single- or multi-gene orthologs can be 

essential or non-essential in the other organism. 

 

Additional files: 

Additional file 1 

File format: PDF 

Title: Supplementary Notes. 

Description: Additional figures and comments on the analyses.  

Additional file 2 

File format: EXCEL 

Title: Supplementary Data 

Description: Data on yeast gene pairs collected during the analyses 
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